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1. This talk is about. . .

. . . rings of continuous definable functions, like

C (X ) = {f : X −→ R | f continuous and semi-algebraic},

where R is a real closed field and X ⊆ Rn is semi-algebraic.

C(X ) is a ring under point wise addition and multiplication.

C(X ) is partially ordered by f ≤ g :⇐⇒ ∀x ∈ X : f (x) ≤ g(x) and this partial order

is definable by the formula ∃z : z2 = g − f .

I report on a few updates over the last years with a focus on the case
X = R and R = Ralg = R ∩Q.

Main open question:
Is C (Ralg) decidable in the first-order language of rings?
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2. Undecidability in dimension > 1

(a) The ring of all continuous functions M −→ R for any non-discrete
metric space M is undecidable [Che80].

(b) If dim(X ) ≥ 2, then C (X ) is undecidable, because the zero set
lattice

LX = {{f = 0} | f ∈ C (X )}

is interpretable in it (use {f = 0} ⊆ {g = 0} ⇐⇒ g ⊆ JacobsonRad(f )),
and LX interprets (N,+, ·) [Grz51; Tre17].

(c) The ring {f : Qp −→ Qp | f is continuous and definable in Qp}
interprets (N,+, ·) and is thus undecidable, [DT20].
[although the zero set lattice of Qp and of Qn

p is decidable, [Dar19]]

Other variants consider different codomains (e.g. Z) and abstractions of
the rings above, which look much more friendly but are still undecidable.

In order to talk about the matter in a more systematic way I will now talk
about the category of real closed rings (in the sense of Niels Schwartz,
[Sch89]) which is a suitable ambient algebraic context to study these kind
of rings:
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3. Real Closed Rings, an elementary definition

Fact Let f ∈ C (Rn
alg). Then there is some polynomial

Pf ∈ Z[X̄ ,Y , Ū], X̄ = (X1, . . . ,Xn)
such that

(a) The graph of f is defined in Ralg by ∃ū Pf (x̄ , y , ū) = 0, and

(b) for some continuous, semi-algebraic function s : Rn
alg −→ Rū

alg we
have Pf (x̄ , f (x̄), s̄(x̄)) = 0 (x̄ ∈ Rn

alg).

This follows quickly from the finiteness theorem applied to the graph of f .

Definition A ring (commutative and unital) A is real closed if it is reduced
and for every f and any choice of Pf as in the fact above we have

A |= ∀x̄ ∃y ∃ū : Pf (x̄ , y , ū) = 0.

Theorem [Tre07] The ring A is real closed if and only if it is real closed in
the sense of Niels Schwartz [Sch89].
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4. Real Closed Rings: Examples

How does this definition work for a real closed ring A?

If f ∈ C (Rn
alg), then the axioms can be used to define a function

fA : An −→ A and the axioms also guarantee that the fA’s compose exactly
like the f ’s.

Think of fA as ’scalar extension’ of f to A, or as “composition with f ”.

For example, Ralg ⊆ A (if A 6= 0): For a ∈ Ralg the constant function f of value

a is in C(Ralg) and satisfies µ(f (x)) = 0 for all x , where µ is the minimal polynomial

of a. Then µA(fA(x)) = 0 for all x ∈ A as well. But µA = µ, as one checks without

difficulty using A 6= 0, and then fA(1) = a follows (easily).

Using these functions one then also sees that A is partially ordered by
a ≤ b ⇐⇒ ∃c ∈ A : b − a = c2.
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4. Real Closed Rings: Examples

Examples

(a) A real closed field R is a field that is also a real closed ring.
Here fR : Rn −→ R is the function defined by any formula defining the graph of

f : Rn
alg −→ Ralg.

(b) A convex subring V of a real closed field R is a valuation ring that is
also a real closed ring.
Here fV = fR |V n .

(c) Rings of all real valued continuous functions on some topological
space as well as the rings C (X ) considered above are real closed.
Here fC(X )(a1, . . . , an) = fR ◦ (a1, . . . , an).
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5. Real Closed Rings: Properties
Properties (I wrote a Wikipedia page)

(a) The category RCR of real closed rings and ringhomomorphism is
reflective in the category of commutative rings. In plain English this
means that every ring A has a real closure, namely a real closed ring ρ(A) and a
ringhomomorphism ρA : A −→ ρ(A) such that for every ringhomomorphism
A−→B ∈ RCR there is a unique ring homomorphism ρ(A)−→B such that the

following diagram commutes:

ρ(A) B

A

∃!

ρA ∀
.

Examples: ρ(R[x̄]) = C(Rn), ρ(C) = 0, ρ(Q) = Ralg, ρ(Q(
√

2)) = Ralg ×Ralg.

(b) The category RCR is complete and cocomplete and forms a variety in
the sense of universal algebra.

(c) All localizations of real closed rings are real closed and local real
closed rings are local Henselian rings (but not nec. domains).

Concretely here: the localization C (X )m at a maximal ideal m is
real closed. If X = R and m = {f | f (0) = 0}, this ring is isomorphic
to V ×R V , where V is the convex hull of R in R(t)rc, t > R.

y

https://en.wikipedia.org/wiki/Real_closed_ring


6. Real Closed Rings: Properties

(d) If R is a real closed field, then

Sper(C (Rn)) ∼= Spec(C (Rn)), even as ringed spaces.
Sn(R) ∼= Spec(C (Rn))patch as topological spaces.

Less ad hoc: The category of closed semi-algebraic subsets X of Rn, n ∈
N with continuous semi-algebraic functions is anti-equivalent to the full
subcategory of rings, consisting of those RCRs that are finitely generated
over R as RCRs.

(Not unlike the anti-equivalence of Zariski closed sets defined over an alg.
closed field K and the finitely generated K -algebras.)
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7. Root causes for undecidability

If we look at a picture of a real closed ring as ring of global sections over
Spec(A), there are two principal reasons for undecidability of A:

Stalks are undecidable (and interpretable). For example, every archimedean
pair of real closed fields is interpretable in a real closed domain of Krull
dimension 1, whose spectrum thus consist of exactly two points {0} ( m.
By [Bau82a; Mac68] there are uncountably many complete theories of such
pairs. Hence most of them are undecidable and hence there is no hope to
get a good grasp on complete theories of such real closed domains either.
For a given pair K ⊆ L of real closed fields take A = K + m, where m is the maximal

ideal of L(t)rc, t > R. Such rings are studied under the name pseudovaluation domains.

The representation space is undecidable (and interpretable): The lattice
of compact open subsets of Spec(A) is often interpretable in A and these
lattices very often interpret (N,+, ·) [Tre17].

Several classes of real closed rings without these obstructions have been
shown to have good model theoretic behavior [Mac68; Ast08; Gui25].
Specifically when the zero set lattice is close to be Boolean, the Feferman-
Vaught technique on generalized products are available.
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8. Semi-algebraic curves

An element a of C (R)n is a continuous semi-algebraic curve a : R −→ Rn,
hence the decidability of C (R) asks about whether the first order theory
of semi-algebraic curves with addition and multiplication is decidable.

Here is a seemingly strong argument against it:

Let P be the set of all compact, connected, semi-algebraic subsets of R2

of dimension ≤ 1. Consider the poset (=partially ordered set) (P,⊆).
This first-order structure interprets (N,+, ·) [Tre17].

[Intermission: This is where the question to A. Berarducci – answered fully
in [BG25] – came from: We know, using [Ast13] (among other things),
that (P,⊆) does not interpret the field R “on a line” and the question was
if this might change for algebraically closed fields, where P is replaced by
irreducible projective curves. Another driving force here is János Kollár’s
question on What determines a variety? [KLOS23]]

Now, P is precisely the set of all images of semi-algebraic curves a ∈
C ([0, 1]R)2.
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8. Semi-algebraic curves

However, why would the ring C ([0, 1]R) interpret this poset?

In fact, the corresponding semilinear question considers the subposet
Plin of piecewise linear members of P.

Again, the poset Plin interprets (N,+, ·), but the corresponding ’parametriz-
ing partially ordered group’ of all continuous semi-linear functions [0, 1] −→
R is decidable and has a “tame” set of definable sets.

This will be explained better below.
y



9. Decidability of the ordered module on curves

Theorem (Deacon Linkhorn [Lin21], Ricardo Palomino [Pal25])

Let C = C (Ralg) and let M be the C -module C , expanded by the partial
order ≤. As a first order structure,

M = (C ,+,≤, 0, (α · | α ∈ C ))

in the language of partially ordered C -modules that has a relation symbol
≤, a binary function symbol + and unary function symbols, one for each
scalar α from C .

Then M is decidable and model complete in a natural language to be
explained next.
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10. Decidability of the ordered module on curves: proof
Here C = C (R), R any real closed field. In the sheaf picture:

• the stalks are all either real closed fields or of the form V ×R V as in
property (c) and these are well understood and decidable.

• The zero set lattice of C is the lattice L(R) of closed semi-linear
subsets of R, i.e. finite unions of closed intervals of R. This lattice
L(R) is already interpretable in the reduct (C (R),+,≤). (Exercise)

Facts

(1) The lattice L(R) is bi-interpretable with weak monadic second order
logic of the chain (R,≤). In the terminology of A. Berarducci’s talk
this is the 2-sorted structure ((R,≤),Fin(R),∈). From automaton
theory we then know that this structure is decidable [Läu68].

(2) Linkhorn has then used ideas from Shelah’s composition method to
obtain a model completeness result for L(R), which reads as follows:
L(R) is model complete in the language with a constant symbol for
∅ and primitive functions

x ∩ y , x ∪ y ,min(x),max(x),LeftEndpoints(x),RightEndpoints(x).
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10. Decidability of the ordered module on curves: proof
R. Palomino has reduced the model theory of the partially ordered module
M = (C ,+,≤, 0, (α · | α ∈ C )) to the zero set lattice L(R) and the
valuation ring V = convex hull of R in R(t)rc, t > R.
This goes as follows. For each minimal prime ideal q of C (R) that is not
maximal, let πq : C (R) −→ V = C (R)/q be the residue map. Consider
the many sorted structure

Mval := (M, (L(R),⊆), (V ,+, ·))

with the following maps between sorts: P : M −→ L(R),P(f ) = {f ≥ 0},
and for each q as a above, the map πq : C −→ V .

Then Mval has quantifier elimination in the home sort M. The procedure
is recursive and explicit.

The sorts L(R) and V are stably embedded. Hence by Cherlin-Dickmann
(dealing with the V -sort) and Linkhorn’s result dealing with the L-sort we
get existential definitions of any M-definable set in the language of Mval.

(The proof substantially generalizes unpublished results announced by Shen
and Weispfenning in [SW87] on divisible abelian `-groups).
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