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Hilbert’s ĲÍÍÍ Theorem
Theorem (Hilbert, ĲÍÍÍ). Given n, d ∈ N, every nonnegative homogeneous poly-
nomial f ∈ R[x!, . . . , xn] of degree d is a sumof squares of polynomials if and only if
(Ĳ) n = ", (7) d = ", or (7) (n, d) = (Þ, Ú).
Example. (Ĳ) n = ": Factor f =⩀d

i=!(µix! ⌐ κix")(µix! ⌐ κix") = g ⋅ g so that
Ú f = (g + g)" ⌐ (g ⌐ g)" = (g + g)" + ⌜!i(g ⌐ g)⌜

"
.

(7) d = ": Diagonalize the quadratic form f = ⊍a
i=! ă"i ⌐⊍b

j=! ă"i with a + b = r; then f
is nonnegative if and only if s = %.

(7) (n, d) = (Þ, Ú): exceptional case (ternary quartics). Hilbert showed that every
nonnegative ternary quartic is a sumof 7 squares of quadratics.

Example. TheMotzkin polynomial xÚy" + x"yÚ + z& ⌐ Þx"y"z" ∈ R[x , y, z] is non-
negative but not a sumof squares.

xÚy" + x"yÚ + z&
Þ ≥ Þ

⌝
xÚy" ⋅ x"yÚ ⋅ z& = x"y"z"

Hilbert’s ĲÍÎ7 Theorem
Theorem (Hilbert, ĲÍÎ7). For every nonnegative form f ∈ R[x , y, z] of degree d
there is a nonnegative polynomial g of degree d ⌐ Ú such that g f is a sumof squares
of polynomials.

Example. d = !%: If f is a nonnegative homogeneous polynomial in R[x , y, z]!% of
degree !%, then there is a nonnegativemultiplier g! ∈ R[x , y, z] such that g! f is a sum
of Þ squares. Recursively, there is a nonnegativemultiplier g" such that g"g! is a sumof
Þ squares so that

(g"g!) f = g"(g! f ) = ⌝ Þ⊍
i=! ă

"
i⌝⌝⌝

Þ⊍
j=! f

"
j
⌞
⌞ =

Ú⊍
i=! h

"
i

Ĳ
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Example. d = !": If f is a nonnegative homogeneous polynomial in R[x , y, z]!" of
degree !", then there is a nonnegativemultiplier g! ∈ R[x , y, z] such that g! f is a sum
of Þ squares. Recursively, there is a nonnegativemultiplier gÚ such that gÚg! is a sumof
Þ squares so that

(gÚg!) f = gÚ(g! f ) = ⌜ Þ⩀
i=! ă

Ú
i⌜⌝⌝

Þ⩀
j=! f

Ú
j
⌝
⌝ =

%⩀
i=! h

Ú
i

because

(aÚ! + bÚ! + cÚ! + dÚ
! )(aÚÚ + bÚÚ + cÚÚ + dÚ

Ú)= (a!aÚ ⌐ b!bÚ ⌐ c!cÚ ⌐ d!dÚ)Ú + (a!bÚ + b!aÚ + c!dÚ ⌐ d!cÚ)Ú+ (a!cÚ ⌐ b!dÚ + c!aÚ + d!bÚ)Ú + (a!dÚ + b!cÚ ⌐ c!bÚ + d!aÚ)Ú
Hilbert’s Ĳ7th Problem

Theorem (Hilbert, ĲÍÎ7). Every nonnegative polynomial f ∈ R[x , y] is a sum of Ĳ
squares inR(x , y).
Hilbert’s Ĳ7th Problem: Is every f ∈ R[x!, . . . , xn] with f (x) ≥ " for all x ∈ Rn a
sum of squares of rational functions?

f = ⌜p!q!⌜
Ú + ⌜pÚqÚ⌜

Ú + . . . + ⌜prqr⌜
Ú

Equivalently, does there exist a polynomial f ∈ R[x!, . . . , xn] such that hÚ f is a sum
of squares pÚ! + pÚÚ + . . . + pÚr of polynomials.

Theorem (Artin, ĲÎ77). Yes, every nonnegative polynomial is a sum of squares of
rational functions.

Hilbert Ĳ7: Complexity
Theorem (Hilbert, ĲÍÎ7). Every nonnegative polynomial f ∈ R[x , y] is a sum of Ĳ
squares inR(x , y).
Theorem (PÏster, ĲÎ77). Every nonnegative rational function f ∈ R(x!, . . . , xn) is a
sumof atmost Ún squares.

Hilbert Ĳ7: Degree Bounds
Main Question:What about degree bounds (in dimension 7)?

Theorem (Blekherman, Smith, Velasco, 76ĲÎ). There exist nonnegative polyno-
mials f ∈ R[x , y]ofdegreeÚ j such that g f isnota sumof squares foranynonnegative
g of degree Úk with k < j ⌐ Þ.
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Theorem (Blekherman, Sinn, Smith, Velasco; *). Let P,Q ⊆ R! be lattice poly-
gons such that no integer translate of P is contained in Q. Let h be the total number
of reduced connected components of the set diĲerences P ⌐ Q′ as Q′ ranges over all
lattice translates ofQ. If the inequality

Ы(!Q) + h > Ы (P +Q)⋊
holds thenwe have: for everynonnegative Laurent polynomial f withmonomial sup-
port in !P there exists a Laurent polynomial g withmonomial support in !Q such that
f g is a sumof squares.

Example (d = "Þ). Hilbert’s result: foreverynonnegative form f ∈ R[x , y, z],deg( f ) =
"Þ, there is a sumof squares g of degree Ú such that g f is a sumof squares.
Blekherman, S, Smith, Velasco: there is a sumof squares h of degree % (with special
support) such that g f is a sumof squares.

Then Ы(!Q) = "Ú and h = &,while Ы(P +Q)⋊ = !Þ.



Example. !d = "Þ: Hilbert’s result: for every nonnegative form f ∈ R[x , y, z] of de-
gree "Þ, there is a sumof squares g of degree Ú such that g f is a sumof squares.
Blekherman, S, Smith, Velasco: there is a sumof squares h of degree % (with special
support) such that g f is a sumof squares.

Then Ы(!Q) = "Ú and h = &,while Ы(P +Q)⌐ = !Þ.

Multiplier Bounds: Aymptotics
Hilbert: Recursively applyting Hilbert’s result gives a sum-of-squaresmultiplier of
degree
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j="(!d − ’ j) ∼

d
! ⋊ !d − ’⌜d⌜! + "! ⌝ ∼ d! − ’ ⋊ "! ⌜d!⌝
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!

BSSV:We take roughly d⌜& steps of size % so that the asymptotics is about

d⌜&⩀
j="(!d − % j) ∼

d
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so that we have equality Ы(!Q) + h = Ы (P +Q)⋊.
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Asymptotics
Let P = d ⋅ %Ú.What is an optimal sequence (P = Q&,QÞ, . . . ,Qr) such that

Ы(ÚQi) + h(Qi⌐Þ,Qi) > Ы ((Qi⌐Þ +Qi)⋊)
holds for every pair (i = Þ, . . . , r) and such that every nonnegative polynomial in
R[ÚQr] is a sum of squares?

Theorem (Blekherman, Smith, Velasco, 77ĲÍ). The lattice polygons Q such that
every nonnegative polynomial inR[ÚQ] is a sum of squares are the following (up to
translations and lattice isomorphisms)

(Ĳ) %Ú = conv{(&, &), (Þ, &), (&, Þ)},
(7) Ú%Ú = conv{(&, &), (Ú, &), (&, Ú)},
(7)Qa,b = conv{(&, &), (a, &), (&, Þ), (b, Þ)} (with a > b).



BSSV:We take roughly d⌜! steps of size " so that the asymptotics is about

d⌜!⩀
j=Þ(Úd ⌐ " j) ∼

d
! ⋅ Úd ⌐ "⌜d⌜! + ÞÚ ⌝ ∼ Ú!dÚ ⌐ " ⋅ ÞÚ ⌜d!⌝

Ú ∼ dÚ

!

Asymptotics
Let P = d ⋅ %Ú.What is an optimal sequence (P = Q&,QÞ, . . . ,Qr) such that

Ы(ÚQi) + h(Qi⌐Þ,Qi) > Ы ((Qi⌐Þ +Qi)⋊)
holds for every pair (i = Þ, . . . , r) and such that every nonnegative polynomial in
R[ÚQr] is a sum of squares?

Theorem (Blekherman, Smith, Velasco, 77ĲÍ). The lattice polygons Q such that
every nonnegative polynomial inR[ÚQ] is a sum of squares are the following (up to
translations and lattice isomorphisms)

(Ĳ) %Ú = conv{(&, &), (Þ, &), (&, Þ)},
(7) Ú%Ú = conv{(&, &), (Ú, &), (&, Ú)},
(7)Qa,b = conv{(&, &), (a, &), (&, Þ), (b, Þ)} (with a > b).

BSSV:We take roughly d⌜! steps of size " so that the asymptotics is about

d⌜!⩀
j=Þ(Úd ⌐ " j) ∼

d
! ⋅ Úd ⌐ "⌜d⌜! + ÞÚ ⌝ ∼ Ú!dÚ ⌐ " ⋅ ÞÚ ⌜d!⌝

Ú ∼ dÚ

!

Asymptotics
Let P = d ⋅ %Ú.What is an optimal sequence (P = Q&,QÞ, . . . ,Qr) such that

Ы(ÚQi) + h(Qi⌐Þ,Qi) > Ы ((Qi⌐Þ +Qi)⋊)
holds for every pair (i = Þ, . . . , r) and such that every nonnegative polynomial in
R[ÚQr] is a sum of squares?

Theorem (Blekherman, Smith, Velasco, 77Ĳ7). The lattice polygons Q such that
every nonnegative polynomial inR[ÚQ] is a sum of squares are the following (up to
translations and lattice isomorphisms)

(Ĳ) %Ú = conv{(&, &), (Þ, &), (&, Þ)},
(7) Ú%Ú = conv{(&, &), (Ú, &), (&, Ú)},
(7)Qa,b = conv{(&, &), (a, &), (&, Þ), (b, Þ)} (with a > b).

BSSV:We take roughly d⌜! steps of size " so that the asymptotics is about

d⌜!⩀
j=Þ(Úd ⌐ " j) ∼

d
! ⋅ Úd ⌐ "⌜d⌜! + ÞÚ ⌝ ∼ Ú!dÚ ⌐ " ⋅ ÞÚ ⌜d!⌝

Ú ∼ dÚ

!

Asymptotics
Let P = d ⋅ %Ú.What is an optimal sequence (P = Q&,QÞ, . . . ,Qr) such that

Ы(ÚQi) + h(Qi⌐Þ,Qi) > Ы ((Qi⌐Þ +Qi)⋊)
holds for every pair (i = Þ, . . . , r) and such that every nonnegative polynomial in
R[ÚQr] is a sum of squares?

Theorem (Blekherman, Smith, Velasco, 77Ĳ7). The lattice polygons Q such that
every nonnegative polynomial inR[ÚQ] is a sum of squares are the following (up to
translations and lattice isomorphisms)

(Ĳ) %Ú = conv{(&, &), (Þ, &), (&, Þ)},
(7) Ú%Ú = conv{(&, &), (Ú, &), (&, Ú)},
(7)Qa,b = conv{(&, &), (a, &), (&, Þ), (b, Þ)} (with a > b).

BSSV:We take roughly d⌜! steps of size " so that the asymptotics is about

d⌜!⩀
j=Þ(Úd ⌐ " j) ∼

d
! ⋅ Úd ⌐ "⌜d⌜! + ÞÚ ⌝ ∼ Ú!dÚ ⌐ " ⋅ ÞÚ ⌜d!⌝

Ú ∼ dÚ

!

Asymptotics
Let P = d ⋅ %Ú.What is an optimal sequence (P = Q&,QÞ, . . . ,Qr) such that

Ы(ÚQi) + h(Qi⌐Þ,Qi) > Ы ((Qi⌐Þ +Qi)⋊)
holds for every pair (i = Þ, . . . , r) and such that every nonnegative polynomial in
R[ÚQr] is a sum of squares?

Theorem (Blekherman, Smith, Velasco, 77Ĳ7). The lattice polygons Q such that
every nonnegative polynomial inR[ÚQ] is a sum of squares are the following (up to
translations and lattice isomorphisms)

(Ĳ) %Ú = conv{(&, &), (Þ, &), (&, Þ)},
(7) Ú%Ú = conv{(&, &), (Ú, &), (&, Ú)},
(7)Qa,b = conv{(&, &), (a, &), (&, Þ), (b, Þ)} (with a > b).

BSSV:We take roughly d⌜! steps of size " so that the asymptotics is about

d⌜!⩀
j=Þ(Úd ⌐ " j) ∼

d
! ⋅ Úd ⌐ "⌜d⌜! + ÞÚ ⌝ ∼ Ú!dÚ ⌐ " ⋅ ÞÚ ⌜d!⌝

Ú ∼ dÚ

!

Asymptotics
Let P = d ⋅ %Ú.What is an optimal sequence (P = Q&,QÞ, . . . ,Qr) such that

Ы(ÚQi) + h(Qi⌐Þ,Qi) > Ы ((Qi⌐Þ +Qi)⋊)
holds for every pair (i = Þ, . . . , r) and such that every nonnegative polynomial in
R[ÚQr] is a sum of squares?

Theorem (Blekherman, Smith, Velasco, 77Ĳ7). The lattice polygons Q such that
every nonnegative polynomial inR[ÚQ] is a sum of squares are the following (up to
translations and lattice isomorphisms)

(Ĳ) %Ú = conv{(&, &), (Þ, &), (&, Þ)},
(7) Ú%Ú = conv{(&, &), (Ú, &), (&, Ú)},
(7)Qa,b = conv{(&, &), (a, &), (&, Þ), (b, Þ)} (with a > b).


