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Hilbert’s 1888 Theorem

Theorem (Hilbert, 1888). Given n,d € N, every nonnegative homogeneous poly-

nomial f € R[x,,...,x,]| of degree d is a sum of squares of polynomials if and only if
(1)n=2,(2)d=20r3)(nd)=(3,4).

Example. The Motzkin polynomial x*y? + x?y* + z6 — 3x%2y?z> € R|[x, y, z| is non-
negative but not a sum of squares.

x4y? + x2yt + 26
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> \3/x4y2 L x2yh - 26 = xzyzzz
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Hilbert’s 1893 Theorem

Theorem (Hilbert, 1893). For every nonnegative form f € R|[x, y, z] of degree 2d
there is a nonnegative polynomial g of degree 2d — 4 such that g f is a sum of squares
of polynomials.

Example. 2d = 10: If f is a nonnegative homogeneous polynomial in R|x, y, z],o of
degree 10, then there is a nonnegative multiplier g, € R|x, y, z] such that g, f is a sum
of 3 squares. Recursively, there is a nonnegative multiplier g, such that g, g, is a sum of
3 squares so that

(8281)f = &(41f) = (ng) (ijz) - Z hz2
i=1 j=1 =1

because

(ai +bi +cf +di)(az + b3+ c5 + d3)
- (611612 — l’)1b2 — € — d1d2)2 + (albz + blaz 4+ Cldz _ dlCz)z
+ (@16 — bidy + c1ay + diby)* + (audy + bicy — c1bs + diay)?



Hilbert’s 17th Problem

Theorem (Hilbert, 1893). Every nonnegative polynomial f € R|x, y| is a sum of 4
squaresin R(x, y).

Hilbert’s 17th Problem: Is every f € R[xy,...,x,] with f(x) > 0 for all x € R" a
sum of squares of rational functions?
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Equivalently, does there exist a polynomial h € R| x;, ..., x, | such that 4 f is a sum

of squares p? + p5 + ... + p? of polynomials.

Theorem (Artin, 1927). Yes, every nonnegative polynomial is a sum of squares of
rational functions.



Hilbert 17: Complexity

Theorem (Hilbert, 1893). Every nonnegative polynomial f € R|x, y|is a sum of 4
squares in R(x, y).

Theorem (Pfister, 1967). Every nonnegative rational function f € R(xy,...,x,)isa
sum of at most 2" squares.



Hilbert 17: Degree Bounds

Main Question: What about degree bounds (in dimension 2)?

Theorem (Blekherman, Smith, Velasco, 2019). There exist nonnegative polyno-
mials f € R|x, y] ofdegree2jsuchthat g f isnotasum ofsquares for any nonnegative
g of degree 2k with k < j - 3.

Theorem (Lombardi, Perrucci, Roy, 2020). An upper bound on the degree of a
multiplier g as above from quantifier elimination is a tower of exponentials.

Example. 2d = 10: Hilbert's result: forevery nonnegativeform f € R x, y, z|, deg(f) =
10, there is a sum of squares g of degree 8 such that g f is a sum of squares.
Blekherman, S, Smith, Velasco: there is a sum of squares h of degree 6 (with special
support) such that g f is a sum of squares.



Gram map

Let P c R" be a lattice polytope (meaning P = conv(P n Z")).
List the monomials x* for « € P n Z" in a vector mp € R[xy,...,x,]|N. Define the
Gram map

RNN — Rlx1, ..., x,]
Gpi ) T
A mPAmp

Example. Let P = conv({(0,0),(0,1),(1,0),(1,1)}) c R?so that

o Reym =~ R[s, x]
o A (1,s,x,sx) A(1,s,x,5%)T

Theorem. Apolynomial f € R|xy, ..., x,] whose Newton polytope is contained in 2P
is a sum of squares of polynomials if and only if there is a positive semidefinite matrix
Awith Gp(A) = f.



Sums of Squares and Projective Varieties

NxN
GPZ {Rsym — R[Txl,...,xn]
A mPAmp

The kernel of Gp is the set of quadratic relations among the monomials in P; in
terms of toric geometry, ker(Gp) = I(Xp),.

Example. Let P = conv{(0,0),(2,0),(0,2)} c R2 Then
Xp=v(P)={(x*:xy :xz: y*: yz: 22)eP°|(x : y : 2) e P?}

and I(Xp), = (xox3 — X%, XoX5 — X3, X3X5 — X5, X1X3 — X0X4, X1X4 — X2X3, XpXq4 — X1X5). A
quadratic form on IP> restricted to Xp corresponds to a ternary quartic.



Multiplier Bounds

Theorem (Hilbert, 1893). For every nonnegative form f € R|x, y,z] of degree d
there is a nonnegative polynomial g of degree d — 4 such that ¢ f is a sum of squares
of polynomials.

Theorem (Blekherman, Sinn, Smith, Velasco; *). Let P, Q c R? be lattice poly-
gons such that no integer translate of P is contained in Q. Let h be the total number
of reduced connected components of the set differences P ~ Q' as Q' ranges over all
lattice translates of Q. If the inequality

#2Q)+h>#(P+ Q)

holds then we have: for every nonnegative Laurent polynomial f with monomial sup-
portin 2P there exists a Laurent polynomial ¢ with monomial supportin 2Q such that
fgisasum of squares.



Multiplier Bounds

Theorem (Blekherman, Sinn, Smith, Velasco; *). Let P, Q ¢ R? be lattice poly-
gons such that no integer translate of P is contained in Q. Let h be the total number
of reduced connected components of the set differences P ~ Q' as Q' ranges over all
lattice translates of Q. If the inequality

#(2Q)+h>#(P+ Q)"

holds then we have: for every nonnegative Laurent polynomial f with monomial sup-
portin 2P there exists a Laurent polynomial g with monomial supportin 2Q such that
fgisasum of squares.

F

Then #(2Q) =18 and h = 3, while #(P + Q)° = 20.




Multiplier Bounds

Let & be the total number of reduced connected components of the set differences
P~ Q"as Q' ranges over all lattice translates of Q.




First improvement: 2d=10

Example. Hilbert’s result: for every nonnegative form f € R|x, y, z| of degree 10,
there is a sum of squares g of degree 8 such that g f is a sum of squares.
Blekherman, S, Smith, Velasco: there is a sum of squares h of degree 6 (with special

support) such that g f is a sum of squares.
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Hilbert vs. Toric Surfaces
ForP=d-A,,Q=(d-2)-A,we have

2Q = (2d - 4) - A,

- (%))

2
h=0
(P+Q)° ~ (2d-5)- A,

#(P+ Q) - (2d2— 3)

so that the inequality #(2Q) + h > # (P + Q)" holds with quite some slack (2d - 3).



Hilbert vs. Toric Surfaces
ForP=d-A,, Q=(d-3)-A,wehave

2Q = (2d-6)- A,

- ()
h=0

(P+Q)" ~ (2d-6) - A,

£(P+ Q) (2d2— 4)

so that we have equality #(2Q) + h = #(P + Q)".



Multiplier Bounds: Aymptotics

Hilbert: Recursively applyting Hilbert’s result gives a sum-of-squares multiplier of
degree

d/2 ,
z<zd-4j>~i.zd_4(d/2+l)Ndz_4.1(é) &
j-1 2 2 2\2 D)

BSSV: We take roughly d/3 steps of size 6 so that the asymptotics is about

4/3 d d/3+1) 2 1(d\} &
2d —67) ~—-2d — ~ — 2 ._(_) ~
2,(2d = 6j) ~5-2d 6( 2 ) 37 7633) 73

7=1




Asymptotics
Let P = d - A,. What is an optimal sequence (P = Qo, Qy, ..., Q,) such that
#(2Q;) + h(Qi—1, Qi) > #((Qi-1 + Qi)°)

holds for every pair (i = 1,...,r) and such that every nonnegative polynomial in
R[2Q,] is a sum of squares?

Theorem (Blekherman, Smith, Velasco, 2016). The lattice polygons Q such that
every nonnegative polynomial in R[2Q] is a sum of squares are the following (up to
translations and lattice isomorphisms)

(1) A, = conv{(0,0),(1,0),(0,1)},
(2) 2A, = conv{(0,0),(2,0),(0,2)},

(3) Qup = conv{(0,0),(a,0),(0,1),(b,1)} (witha > b).



