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Spectrahedra

A spectrahedron is the solution set of a linear matrix inequality (LMI):

K =
{
x ∈ Rn : A0 +

n∑
i=1

xiAi � 0
}

with Ai ∈ Sd = Symd(R), some d ≥ 1. Spectrahedra are closed convex s.a. sets:

diag(f1, . . . , fd) � 0
fi linear

(
3−2x1 −x1 2x2 −2x2
−x1 3+2x1 −x2 −2x2
2x2 −x2 2−2x1 0
−2x2 −2x2 0 2+2x1+x2

)
� 0

( 1 x1 x2
x1 1 x3
x2 x3 1

)
� 0
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Spectrahedral shadows

Spectrahedral shadows are the linear images of spectrahedra. They are the
solution sets of lifted LMIs:

K =
{
x ∈ Rn : ∃ y ∈ Rm A0 +

n∑
i=1

xiAi +
m∑
i=1

yjBj � 0
}

(with Ai , Bj ∈ Sd , some m, d) and are convex s.a. sets. E.g.
K = {(x1, x2) ∈ R2 : x4

1 + x4
2 ≤ 1} (“tv-screen”):

K =

x ∈ R2 : ∃ u ∈ R2


1+u1 u2 0 0 0 0
u2 1−u1 0 0 0 0
0 0 u1 x1 0 0
0 0 x1 1 0 0
0 0 0 0 u2 x2
0 0 0 0 x2 1

 � 0


Background: Semidefinite programming SDP (optimize linear functions over
spectrahedra). Spectrahedral shadows are precisely the feasible sets of SDP.
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Existence of convex non-shadows

Spectrahedral shadows are convex and semialgebraic. What else?

Nemirovskii (ICM Madrid 2006): Is every convex semialgebraic set a shadow?

Meanwhile much better understood:

I (Helton-Nie 2009/2010) Sufficient geometric conditions for convex K ⊆ Rn

to be a shadow (e.g. K compact with non-singular boundary of strict
positive curvature)

I (Sch. 2017) There exist closed convex s.a. non-shadows. Prominent example:

Pn,2d =
{
f ∈ R[x1, . . . , xn] : f homogeneous, deg(f ) = 2d , f ≥ 0 on Rn

}
is a non-shadow precisely if Pn,2d 6= Σn,2d (ie iff 2d ≥ 6 and n ≥ 3, or
(n, 2d) = (4, 4), Hilbert 1888)

I (Bodirsky-Kummer-Thom 2024) Cn = {A ∈ Sn : ∀ x ∈ Rn
+ x tAx ≥ 0} (cone

of copositive symmetric n × n-matrices) is a non-shadow for n ≥ 5. Had
been a well-known open question for years.

I Many more explicit results, e.g. Hess-Goel-Kuhlmann 2025: Filtration
Σn,2d ( C1 ( · · · ( Ck = Pn,2d by intermediate cones Ci ; none of the Ci is a
shadow.

(more)
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Existence of convex non-shadows

I (Sch. 2017) The closed convex hull of any one-dimensional s.a. set in Rn is a
shadow. But any s.a. set of dimension ≥ 2 can be imbedded in RN (for
some N) in such a way that its closed convex hull in RN is a non-shadow.

I Several equivalent (quite different) characterizations for being a shadow are
known. However, none is easy to check in general.

Many natural questions still open, e.g.:

I Every convex s.a. set in R2 is a shadow. How about sets in R3? in R4? . . .
Smallest known example of a non-shadow lives in R11!

I Do there exist non-shadows with smooth boundary? All non-shadows
constructed so far have singular boundary.
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Semidefinite extension degree

To perform SDP over a shadow K one uses a lifted LMI representation

K =
{
x ∈ Rn : ∃ y ∈ Rm M(x , y) � 0

}
Small matrix size is preferable: A block-diagonal LMI with many small blocks
performs MUCH faster than one large-size LMI with dense entries.

Definition: (Averkov 2019) For K ⊆ Rn convex let sxdeg(K ) (semidefinite
extension degree of K ) be the smallest d ≥ 1 such that K has a lifted LMI
representation

K =
{
x ∈ Rn : ∃ y ∈ Rm M1(x , y) � 0, . . . ,Mr (x , y) � 0

}
with linear matrix polynomials Mi (x , y) of size at most d × d .

I sxdeg(K ) = 1 ⇔ K is a polyhedron

I sxdeg(K ) ≤ 2 ⇔ K is second-order cone (soc) representable

I sxdeg(K ) <∞ ⇔ K is a shadow

sxdeg(K ) defines a hierarchy for the intrinsic complexity of SDP over the set K
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Upper and lower bounds for sxdeg

Lower bounds: (Averkov) General criterion on K (of mixed geometric /
combinatorial character) that guarantees sxdeg(K ) ≥ d . Interesting cases e.g.:

I sxdeg(Sd+) = d (and not less) (Fawzi 2019 for d = 3, Averkov 2019 in
general)

I sxdeg(Σn,2d) = sxdeg(Σ∗
n,2d) =

(
n+d−1

d

)
= dimR[x1, . . . , xn]d (and not less).

Note: Σ∗
n,2d is a spectrahedral cone, naturally described by an LMI of size(

n+d−1
d

)
.

Upper bound:

I (Sch. 2024) If K ⊆ Rn is the closed convex hull of a one-dimensional s.a. set
then sxdeg(K ) ≤ b n2c+ 1.

I In particular, sxdeg(K ) ≤ 2 for every closed convex set K ⊆ R2

Bound is sharp: K = conv{(t, t2, . . . , tn) : t ∈ R} ⊆ Rn, then
sxdeg(K ) ≥ b n2c+ 1 by Averkov’s criterion. Explicit LMI representation of this
size:

K =

x ∈ Rn :

 1 x1 ··· xk
x1 x2 ··· xk+1

...
...

...
xk xk+1 ··· x2k

 � 0

 , k =
⌊n

2

⌋
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More open questions

Again: Equivalent characterizations for sxdeg(K ) ≤ d are known. But in general,
sxdeg is not well understood. Some open questions:

I Let K ⊆ R3 be closed convex s.a. Then is sxdeg(K ) ≤ 2? No
counter-example known. But not even known whether sxdeg(K ) <∞!

I More generally, let n be arbitrary, let K ⊆ Rn be a shadow. Then is
sxdeg(K ) ≤ b n2c+ 1? (the bound for convex hulls of curves) No
counter-example known.
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Hyperbolic forms

A form f = f (x1, . . . , xn) is hyperbolic wrt e ∈ Rn if f (e) 6= 0 and if for every
u ∈ Rn, the polynomial f (te + u) ∈ R[t] is real-rooted. Put Ue(f ) = connected
component of e in {x ∈ Rn : f (x) 6= 0}. The (closed) hyperbolicity cone of f is
Ce(f ) := Ue(f ). This is a closed convex cone (Gårding 1959).

f = det

(
3z−2x −x 2y −2y
−x 3z+2x −y −2y
2y −y 2z−2x 0
−2y −2y 0 2z+2x+y

)
, z = 1

Standard example: Symmetric linear matrix polynomial A(x) =
∑n

i=1 xiAi (with
Ai ∈ Sd). If e ∈ Rn satisfies A(e) � 0 then f (x) := detA(x) is hyperbolic wrt e,
with hyperbolicity cone

Ce(f ) = {x ∈ Rn : A(x) � 0}

So Ce(f ) is a spectrahedral cone in this case.
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(Weak) Generalized Lax Conjecture

In n = 3 variables this gives all hyperbolic forms: Former Lax Conjecture (1958),
proved by Helton-Vinnikov (2007).

For n > 3 there are much more hyperbolic forms. But perhaps not more
hyperbolicity cones?

Generalized Lax Conjecture (GLC): For every n and every hyperbolic form
f ∈ R[x1, . . . , xn], the hyperbolicity cone Ce(f ) is a spectrahedron, ie described by
a linear matrix inequality.

Essentially wide open. Not even known if the Weak GLC holds, which predicts
that, at least, Ce(f ) is always a spectrahedral shadow.

The Weak GLC has been proved by Netzer-Sanyal (2015) in the case where Ce(f )
has smooth boundary.
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Strengthening of Netzer-Sanyal

Theorem 1: Let f be a hyperbolic form such that Ce(f ) has smooth boundary.
Then Ce(f ) is soc-representable, ie sxdegCe(f ) = 2.

Is a consequence of a more general result:

Theorem 2: Let K ⊆ Rn be a compact convex s.a. set such that ∂K is
everywhere smooth of strict positive curvature. Then sxdeg(K ) = 2.

Let K ⊆ Rn be closed convex. A point u ∈ ∂K is a smooth boundary point of K if ∃ g ∈ R[x]
with ∇g(u) 6= 0 and K ∩ U = {g ≥ 0} ∩ U for some neighborhood U of u. Moreover, ∂K has
strict positive curvature at u if x t∇2g(u)x < 0 for all 0 6= x ∈ Rn with 〈x ,∇g(u)〉 = 0. E.g.

K = {x ∈ R2 : x4
1 + x4

2 ≤ 1}

has smooth boundary and strict positive curvature in all points except (±1, 0), (0,±1).

Theorem 1 is reduced to Theorem 2 by intersecting the hyperbolicity cone with a
suitable affine hyperplane.
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Some details of proof

Proof of Theorem 2 uses concept of tensor evaluation: Let K ⊆ Rn be convex with smooth
boundary. Given a real closed field R ⊇ R and η ∈ ∂KR , let tη ∈ R[x] be the positive tangent to

∂KR at η. For ξ ∈ ∂KR consider t⊗η (ξ) ∈ R ⊗ R, the image of tη under

R[x] = R[x]⊗ R
ξ⊗1−−−→ R ⊗ R

Showing sxdeg(K) ≤ 2 means to show that t⊗η (ξ) =
∑

i

(
ai ⊗ bi − ci ⊗ di )

2 in R ⊗ R (∀ choices
of R, ξ, η).

Reduce to case where ξ, η specialize to same R-point u ∈ ∂KR. Then use local Taylor
expansion of f at u.

Algebraic fact used: If A is a f.g. smooth R-algebra of dimension n for which ΩA/R is free, and

if I = ker(A⊗ A
mult−−−→ A), then

(A⊗ A)/I d ∼= A[y1, . . . , yn]/〈y1, . . . , yn〉d ∀ d ≥ 1

A related technique is used for second main result:

12 / 13



Convex forms

A form f ∈ R[x1, . . . , xn] is convex if f
(
x+y

2

)
≤ f (x)+f (y)

2 for all x , y ∈ Rn. Every
convex form f with deg(f ) ≥ 2 is ≥ 0 on Rn. Parrilo (2007) asked: Is f
necessarily sos?

Theorem: (Blekherman 2009) Let 2d ≥ 4 be fixed. Then for n� 0 there exists
a convex form of degree 2d in n variables that is not sos.

Asymptotically for n→∞, vol(Kn,2d) grows stronger than vol(Σn,2d).

Saunderson (2022): First explicit example of such a form, of degree 4 in 272
variables!

Theorem 3: Assume that f ∈ R[x1, . . . , xn] is a convex form that is not sos.
Then the upper hull of graph(f),

U(f ) =
{

(x0, . . . , xn) ∈ Rn+1 : x0 ≥ f (x1, . . . , xn)
}
,

is (convex and) not a shadow.

Corollary: There exist closed convex non-shadows with smooth boundary.

Question: What is the smallest n ≥ 3 such that there exists a convex form in n
variables that is not sos?
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Thank you DDG!

Congratulations DDG, and Many Happy Returns!
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