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What is it about ?
(P and Q two univariate polynomials)

• unify two appproaches of the euclidean remainder
sequence of P and Q

• subresultants starting from Euler, famous in computer
algebra, defined through minors containing the coefficients
of P and Q (so, no denominators), proportional to the
euclidean remainder sequence of P and Q

• Sylvester double sums, introduced by Sylvester in 1840,
less famous, defined through symmetric expressions of the
roots of P and Q, also proportional to the euclidean
remainder sequence of P and Q (classically: only when
there are no multiple roots)

• the equality of two expressions of the resultant in terms of
the determinant of Sylvester matrix and in terms of the
roots of P and Q is a prototype.
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Resultant

P = {x1, . . . , xp} , Q = {y1, . . . , yq} (q < p)
Π(P,Q) =

∏
a∈P,b∈Q

(a − b) = (−1)pq
∏

a∈P,b∈Q

(b − a)

P(U) = Π(U,P), Q(U) = Π(U,Q)

Proposition (two expressions for the resultant)

Π(P,Q) = εdetSH(P,Q)

where SH(P,Q) , the Sylvester-Habicht matrix, is the p + q
square matrix with rows X q−1P . . . ,P,Q, . . .X p−1Q in the basis
X p+q−1, . . . ,1 and ε is a sign.
By induction on the length of the remainder sequence, going
from (P,Q) to (Q,R), where R = −Rem(P,Q)
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Resultant

By induction on the length of the remainder sequence, going
from (P,Q) to (Q,R), where R/cr = Π(U,R)

Π(P,Q) = (−1)pq
∏
b∈Q

P(b) = (−1)q(p−q)
∏
b∈Q

R(b)

= (−1)q(p−q)cq
r Π(Q,R)

Key: P = CQ − R =⇒ P(b) = −R(b),b ∈ Q

detSH(P,Q) = εp−qcq
r detSH(Q,R/cr )

εi = (−1)i(i−1)/2.
Key: the row of coefficients of −R is obtained by substracting to
the row of coefficients of P a linear combination of rows of
coefficents of X p−qQ, . . . ,Q, which does not change the
determinant. Needed to reorder the rows.
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What we want to prove and our method

(P and Q two polynomials, R = −Rem(P,Q))
• Already known: Sylvester double sums, simple roots case,

are equal (up to a constant) to subresultants;
• Our aim: define Sylvester double sums when there are

multiplicities.
• Our main result: Sylvester double sums are equal (up to a

sign) to subresultants in the general case.
• Our proof: by induction on the length of the remainder

sequence, using the relationship between the values of
both quantities for (P,Q) and for (Q,R = −Rem(P,Q)).

• This method of proof plays a key role in many proofs in real
root counting (Sturm theorem, structure theorem of
subresultants, Bezoutians) [BPR]
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Sylvester double sums, simple roots case

P = {x1, . . . , xp} , Q = {y1, . . . , yq} (q < p)
K ⊂k P,L ⊂ℓ Q, Π(K,L) =

∏
a∈K
b∈L

(a − b).

P(U) = Π(U,P), Q(U) = Π(U,Q)

Definition (classical Sylvester double sums)

Sylvk ,ℓ(P,Q)(U) =
∑

K⊂k P
L⊂ℓQ

Π(U,K)Π(U,L)
Π(K,L)Π(P \ K,Q \ L)
Π(K,P \ K)Π(L,Q \ L)

Definition non sensical when there are multiple roots.
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Sylvester motivation

• Hard to guess. His papers [S1840] and [S1853] are not
written in modern mathematical terms.

• Double sums are symmetric expression of the roots.
• Connection with gcd.

Sylvk ,ℓ(P,Q)(U) =
∑

K⊂k P
L⊂ℓQ

Π(U,K)Π(U,L)
Π(K,L)Π(P \ K,Q \ L)
Π(K,P \ K)Π(L,Q \ L)

If G = gcd(P,Q) has roots {z1, . . . , zg},
• If j = k + ℓ < g, Sylvk ,ℓ(P,Q)(U) = 0
• If j = k + ℓ = g, Sylvk ,ℓ(P,Q)(U) proportional to G.

Our motivation: modern correct proofs, with formulas for special
cases (multiple roots).
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Sylvester double sums, another expression

Vandermonde vector vi(U) =
[
U j−1]

0≤j≤i−1 .

The Vandermonde determinant V (T) is the determinant of the
Vandermonde matrix T = (vi(T1), . . . , vi(Ti)) (ordered list)
L∥K : ordered set obtained by concatenation
V (L∥K) = V (K)Π(K,L)V (L)
σK : signature of the permutation P 7→ K∥(P \ K)
σL : signature of the permutation Q 7→ L∥(Q \ L)
New expression of the double sums.

Sylvk ,ℓ(P,Q)(U) =
∑
K⊂k P
L⊂ℓQ

σKσL
V (Q \ L∥P \ K)V (L∥K∥U)

V (P)V (Q)
.

New definition also does not make sense when there are
multiple roots.
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Generalized Vandermonde: an example
Two rooots x1 (double) and x2 (triple),
x1,j = (x1, j), j = 0,1, x2,j = (x2, j), j = 0,1,2

P = {x1,0, x1,1, x2,0, x2,1, x2,2}

V (XP) = det


1 1 1 1 1

X1,0 X1,1 X2,0 X2,1 X2,2
X 2

1,0 X 2
1,1 X 2

2,0 X 2
2,1 X 2

2,2
X 3

1,0 X 3
1,1 X 3

2,0 X 3
2,1 X 3

2,2
X 4

1,0 X 4
1,1 X 4

2,0 X 4
2,1 X 4

2,2



V [P] = ∂[P](V (XP))(P) = det


1 0 1 0 0
x1 1 x2 1 0
x2

1 2x1 x2
2 2x2 1

x3
1 3x2

1 x3
2 3x2

2 3x2
x4

1 4x3
1 x4

2 4x3
2 6x2

2


= (x2 − x1)

6 ̸= 0
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Generalized Vandermonde

P = {x1,0, . . . , x1,µ1−1, . . . , xk ,0, . . . , xk ,µk−1},

xi,j = (xi , j), xi ̸= xi ′ for i ̸= i ′,
∑k

i=1 µi = p.

Q = {y1,0, . . . , y1,ν1−1, . . . , yℓ,0, . . . , yℓ,νℓ−1},

yi,j = (yi , j), yi ̸= yi ′ for i ̸= i ′,
∑ℓ

i=1 νi = q.

XP = {X1,0, . . . ,X1,µ1−1, . . . ,Xk ,0, . . . ,Xk ,µk−1},
YQ = {Y1,0, . . . ,Y1,ν1−1, . . . ,Yk ,0, . . . ,Yk ,νk−1}
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Generalized Vandermonde
For f ∈ K [V][U],

∂[i]f
∂U i =

1
i!

∂ i f
∂U i

For f ∈ K [XP] and K ⊂k P, with XK =
{

Xi,j |xi,j ∈ K
}

,
define ∂[K](f ) by

∂[∅]f = f , for K = K′∥
{

xi,j
}
, ∂[K]f =

∂[j]∂[K′]f

∂X j
i,j

Definition (Generalized Vandermonde determinant)

V [P] = ∂[P](V (XP))(P).

V [P] =
∏

1≤i<j≤k

(xj − xi)
µiµj
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General Sylvester double sums
Definitions did not make sense when there are mulltiple roots.

0
0

use L’Hôpital’s Rule: derivate in a relevant way numerator and
denominator.

V [L∥K||U) = ∂[K]∂[L]V (YL||XK||U)(L||K)

(derivation with respect to XP,YQ not with respect to U)

Definition (Sylvester double sums)

Sylvk ,ℓ(P,Q)(U) =
∑
K⊂k P
L⊂ℓQ

σKσL
V [Q \ L∥P \ K]V [L∥K∥U)

V [P]V [Q]
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Subresultants, P, Q non monic

Subresultants are defined by minors of the Sylvester-Habicht
matrix and are proportional to the polynomials in the remainder
sequence.
R = −Rem(P,Q), εi = (−1)i(i−1)/2. The following is well known

Proposition (induction for subresultants)

1. Sresp−1(P,Q)(U) = Q(U)

2. Sresj(P,Q)(U) = 0 q < j < p − 1
3. Sresq(P,Q)(U) = εp−q lc(Q)p−q−1Q(U)

4. Sresj(P,Q)(U) = εp−q lc(Q)p−r Sresj(Q,R)(U) if j < q,
R ̸= 0

5. Sresj(P,Q)(U) = 0 if j < q, R = 0
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Our aim for Sylvester double sums,P, Q non monic

Definition in the non monic case:

Sylvk ,ℓ(P,Q)(U) = lc(P)q−j lc(Q)p−jSylvk ,ℓ
(

P
lc(P)

,
Q

lc(Q)

)
(U)

Proposition (induction for double sums)

1. Sylvp−1,0(P,Q,U) = (−1)p−1lc(P)q−p+1Q(U)

2. Sylvj,0(P,Q)(U) = 0, q < j < p − 1
3. Sylvq,0(P,Q)(U) = (−1)q(p−q)lc(Q)p−q−1Q(U)

4. Sylvj,0(P,Q)(U) = (−1)q(p−q)lc(Q)p−r Sylvj,0(Q,R)(U) if
j < q, R ̸= 0

5. Sylvj,0(P,Q)(U) = 0 if j < q, R = 0
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What we want to do

• Prove that Sylvk ,ℓ(P,Q)(U) is proportional to
Sylvj,0(P,Q)(U) , j = k + ℓ

• Using the two propositions (induction for subresultants,
induction for double sums) to prove that Sresj(P,Q)(U) and
Sylvj,0(P,Q)(U) coincide up to sign.

• We would like to use interpolation to prove equalities in the
induction for double sums but there are

(p
k

)
subsets of P or

cardinal k ! Solution: add variables !
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Classical Hermite Interpolation

U: one indeterminate

Proposition
Given an ordered list

q = (q1,0, . . . ,q1,µ1−1, . . . ,qm,0, . . . ,qm,µm−1)

of p numbers, there is one and only one polynomial of degree
at most p − 1 satisfying the property

for all 1 ≤ i ≤ m, for all 0 ≤ j < µi , Q[j](xi) = qi,j .

(generalizes Classical Lagrange interpolation)
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Classical Hermite Interpolation

U: one indeterminate . Hermite interpolation basis (in an
example)
Two rooots x1 (double) and x2 (triple),

P = {x1,0, x1,1, x2,0, x2,1, x2,2}

V[P∥U) =


1 0 1 0 0 1
x1 1 x2 1 0 U
x2

1 2x1 x2
2 2x2 1 U2

x3
1 3x2

1 x3
2 3x2

2 3x2 U3

x4
1 4x3

1 x4
2 4x3

2 6x2
2 U4


them remove one of the five first columns, compute the
determinant and divide by V [P]: Hermite interpolation basis of
polynomials of degree ≤ 4.
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Multisymmetric Hermite Interpolation
U: a block of indeterminates of cardinality p − k

Proposition

BP,k =

{
V [K||U)

V [P]V (U)

}
indexed by K ⊂k P is a linear basis of the set of symmetric
polynomials in U of multidegree at most k , . . . , k.

If g is such a symmetric polynomial in U ,

g =
∑

K⊂k P

σK∂
[P\K](g(XP\K)V (XP\K))(P \ K)

V [K||U)

V [P]V (U)

(our definition, generalizing Multisymmetric Lagrange
interpolation used by T. Krick, A. Szanto, M. Valdetarro)

As a corollary: classical Hermite Interpolation.
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Multi Sylvester double sums
Add variables to be able to prove equalities by interpolation:
idea borrowed from T. Krick, A. Szanto, and M. Valdetarro
(2016)

Definition (Multi Sylvester double sums)
P and Q: monic polynomials, j = k + ℓ, #U = p − j .

MSylvk ,ℓ(P,Q)(U) =
∑
K⊂k P
L⊂ℓQ

σKσL
V [Q \ L∥P \ K]V [L∥K∥U)

V [P]V [Q]V (U)
(1)

(derivation with respect to XP,YQ not with respect to U)

Proposition
Sylvk ,ℓ(P,Q)(U) is the coefficient of

∏
U′∈U′

U ′j in

MSylvk ,ℓ(P,Q)(U∥U′), #U′ = p − j − 1
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Multi Sylvester double sums for j ≥ q
P and Q two monic polynomials

Proposition
if ℓ ≤ q ≤ k + ℓ = j < p then(

q
ℓ

)
MSylvj,0(P,Q,U) = (−1)ℓ(p−j)MSylvk ,ℓ(P,Q,U)

Proof rather easy using interpolation!
By taking a relevant coefficient,

Corollary
P and Q two monic polynomials; if ℓ ≤ q ≤ k + ℓ = j < p then(

q
ℓ

)
Sylvj,0(P,Q,U) = (−1)ℓ(p−j)Sylvk ,ℓ(P,Q,U)
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Proposition
If q ≤ j ≤ p − 1

MSylvj,0(P,Q)(U) = (−1)j(p−j)lc(P)q−j
∏
U∈U

Q(U)

Proof "Easy", using multisymmetric Hermite interpolation∏
U∈U

Q(U) =
∑
K⊂j P

σK∂
[P\K]

V (XP\K)
∏

X∈XP\K

Q(X )

 (P \ K)
V [K||U)

V [P]V (U)

By taking a relevant coefficient,

Corollary

1. Sylvp−1,0(P,Q,U) = (−1)p−1lc(P)q−p+1Q(U)

2. Sylvj,0(P,Q,U) = 0, q < j < p − 1,
3. Sylvq,0(P,Q,U) = (−1)q(p−q)lc(Q)p−q−1Q
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Multi Sylvester double sums for 0 ≤ j < q
Proposition
If k ∈ N, ℓ ∈ N, k + ℓ = j < q and U a set of p − j

indeterminates,

MSylvk ,ℓ(P,Q)(U) =

(
j
k

)
(−1)ℓ(p−j)MSylvj,0(P,Q)(U).

The proof is complicated and uses the Exchange Lemma from
T. Krick, A. Szanto, and M. Valdetarro (2016).
By taking a relevant coefficient,

Corollary
If k ∈ N, ℓ ∈ N, k + ℓ = j < q,

Sylvk ,ℓ(P,Q)(U) =

(
j
k

)
(−1)ℓ(p−j)Sylvj,0(P,Q)(U).
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Sylvester double sums and remainder

It remains to prove for P and Q non monic

Proposition
• Sylvj,0(P,Q)(U) = (−1)q(p−q)lc(Q)p−r Sylvj,0(Q,R)(U) if

j < q, R ̸= 0
• Sylvj,0(P,Q)(U) = 0 if j < q, R = 0

The proof uses as essential ingredient

Lemma
R = −Rem(P,Q). For every yi such that Q(yi) = 0,
0 ≤ j ≤ νi − 1,

P [j](yi) = −R[j](yi)

And also the proportionnality between Sylvj,0(Q,R)(U) and
Sylv0,j(Q,R)(U).
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Conclusion
• We introduced general Sylvester double sums making

sense when there are multiplicities using Generalized
Vandermonde determinants

• We proved that Sylvk ,ℓ(P,Q)(U) is proportional to
Sylvj,0(P,Q)(U), j = k + ℓ in all cases

• We proved that Sylvj,0(P,Q)(U) and Sresj(P,Q)(U) are
proportional for q ≤ j ≤ p and satisfy a similar induction for
j < q when we replace P,Q by Q,R

• We used this result to prove by induction that
Sylvj,0(P,Q)(U) and Sresj(P,Q)(U) are proportional !

• Introducing Multsymmetric Hermite Interpolation and Multi
Sylvester double sums (generalizing the use of
Multisymmetric Lagrange Interpolation [KSV]) and using
the Exchange Lemma from [KSV] was essential in our
proofs.



Introduction Vandermonde Idea of the proof Hermite interpolation Sketch of the proof

References

[BPR] Basu, S., Pollack, R., and Roy, M.-F. (2003). Algorithms
in real algebraic geometry. Springer.
[KSV] Krick, T., Szanto, A., and Valdetarro, M. (2016).
Symmetric interpolation, exchange lemma and double sums.
Communications in Algebra, 45.
[S1840] Sylvester, J. J. (1840). Note on elimination.
Philosophical Magazine, XVII.
[S1853] Sylvester, J. J. (1853). A theory of the syzygetic
relations of two rational integral functions.
[RS] M.-F. Roy, A. Szpirglas. Sylvester double sums,
subresultants and symmetric multivariate Hermite interpolation,
Journal of Symbolic Computation, Volume 96,
January–February 2020, Pages 85-107 (preliminary version,
arXiv:1805.10609).


	Introduction
	Vandermonde
	Idea of the proof
	Hermite interpolation
	Sketch of the proof

