Sylvester double sums when there are multiplicities and symmetric Hermite interpolation

Marie-Françoise Roy based on a work in common with Aviva Szpirglas

IRMAR, Université Rennes, France

DDG40, Banyuls, August 7 2025

What is it about?

(P and Q two univariate polynomials)

- unify two appproaches of the euclidean remainder sequence of P and Q
- subresultants starting from Euler, famous in computer algebra, defined through minors containing the coefficients of P and Q (so, no denominators), proportional to the euclidean remainder sequence of P and Q
- Sylvester double sums, introduced by Sylvester in 1840, less famous, defined through symmetric expressions of the roots of P and Q, also proportional to the euclidean remainder sequence of P and Q (classically: only when there are no multiple roots)
- the equality of two expressions of the resultant in terms of the determinant of Sylvester matrix and in terms of the roots of *P* and *Q* is a prototype.

Resultant

$$\mathbf{P} = \{x_1, ..., x_p\}, \mathbf{Q} = \{y_1, ..., y_q\} (q < p)
\Pi(\mathbf{P}, \mathbf{Q}) = \prod_{a \in \mathbf{P}, b \in \mathbf{Q}} (a - b) = (-1)^{pq} \prod_{a \in \mathbf{P}, b \in \mathbf{Q}} (b - a)
P(U) = \Pi(U, \mathbf{P}), Q(U) = \Pi(U, \mathbf{Q})$$

Proposition (two expressions for the resultant)

$$\Pi(\mathbf{P}, \mathbf{Q}) = \varepsilon \text{detSH}(P, Q)$$

where SH(P,Q), the Sylvester-Habicht matrix, is the p+q square matrix with rows $X^{q-1}P\dots,P,Q,\dots X^{p-1}Q$ in the basis $X^{p+q-1},\dots,1$ and ε is a sign.

By induction on the length of the remainder sequence, going from (P, Q) to (Q, R), where R = -Rem(P, Q)

Resultant

By induction on the length of the remainder sequence, going from (P, Q) to (Q, R), where $R/c_r = \Pi(U, \mathbf{R})$

$$\Pi(\mathbf{P}, \mathbf{Q}) = (-1)^{pq} \prod_{b \in \mathbf{Q}} P(b) = (-1)^{q(p-q)} \prod_{b \in \mathbf{Q}} R(b)$$
$$= (-1)^{q(p-q)} c_r^q \Pi(\mathbf{Q}, \mathbf{R})$$

Key:
$$P = CQ - R \implies P(b) = -R(b), b \in \mathbf{Q}$$

$$detSH(P,Q) = \varepsilon_{p-q}c_r^q detSH(Q,R/c_r)$$

$$\varepsilon_i = (-1)^{i(i-1)/2}.$$

Key: the row of coefficients of -R is obtained by substracting to the row of coefficients of P a linear combination of rows of coefficients of $X^{p-q}Q, \ldots, Q$, which does not change the determinant. Needed to reorder the rows.

What we want to prove and our method

(P and Q two polynomials, R = -Rem(P, Q))

- Already known: Sylvester double sums, simple roots case, are equal (up to a constant) to subresultants;
- Our aim: define Sylvester double sums when there are multiplicities.
- Our main result: Sylvester double sums are equal (up to a sign) to subresultants in the general case.
- Our proof: by induction on the length of the remainder sequence, using the relationship between the values of both quantities for (P, Q) and for (Q, R = -Rem(P, Q)).
- This method of proof plays a key role in many proofs in real root counting (Sturm theorem, structure theorem of subresultants, Bezoutians) [BPR]

Sylvester double sums, simple roots case

$$\begin{aligned} \mathbf{P} &= \{x_1, \dots, x_p\} \text{ , } \mathbf{Q} = \{y_1, \dots, y_q\} \text{ } (q < p) \\ \mathbf{K} &\subset_k \mathbf{P}, \mathbf{L} \subset_\ell \mathbf{Q}, \ \Pi(\mathbf{K}, \mathbf{L}) = \prod_{\substack{a \in \mathbf{K} \\ b \in \mathbf{L}}} (a - b). \\ P(U) &= \Pi(U, \mathbf{P}), \ Q(U) = \Pi(U, \mathbf{Q}) \\ \text{Definition (classical Sylvester double sums)} \end{aligned}$$

$$\operatorname{Sylv}^{k,\ell}(P,Q)(U) = \sum_{\substack{\mathbf{K} \subseteq_k \mathbf{P} \\ \mathbf{L} \subseteq \mathbf{Q}}} \Pi(U,\mathbf{K}) \Pi(U,\mathbf{L}) \frac{\Pi(\mathbf{K},\mathbf{L}) \Pi(\mathbf{P} \setminus \mathbf{K},\mathbf{Q} \setminus \mathbf{L})}{\Pi(\mathbf{K},\mathbf{P} \setminus \mathbf{K}) \Pi(\mathbf{L},\mathbf{Q} \setminus \mathbf{L})}$$

Definition non sensical when there are multiple roots.

Sylvester motivation

- Hard to guess. His papers [S1840] and [S1853] are not written in modern mathematical terms.
- Double sums are symmetric expression of the roots.
- Connection with gcd.

$$\operatorname{Sylv}^{k,\ell}(P,Q)(U) = \sum_{\substack{\mathbf{K} \subset_k \mathbf{P} \\ \mathbf{L} \subset_\ell \mathbf{Q}}} \Pi(U,\mathbf{K}) \Pi(U,\mathbf{L}) \frac{\Pi(\mathbf{K},\mathbf{L}) \Pi(\mathbf{P} \setminus \mathbf{K},\mathbf{Q} \setminus \mathbf{L})}{\Pi(\mathbf{K},\mathbf{P} \setminus \mathbf{K}) \Pi(\mathbf{L},\mathbf{Q} \setminus \mathbf{L})}$$

If $G = \gcd(P, Q)$ has roots $\{z_1, \ldots, z_g\}$,

- If $j = k + \ell < g$, Sylv^{k, ℓ}(P, Q)(U) = 0
- If $j = k + \ell = g$, Sylv^{k,ℓ}(P,Q)(U) proportional to G.

Our motivation: modern correct proofs, with formulas for special cases (multiple roots).

Sylvester double sums, another expression

Vandermonde vector $v_i(U) = [U^{j-1}]_{0 \le j \le i-1}$.

The Vandermonde determinant $V(\mathbf{T})$ is the determinant of the Vandermonde matrix $\mathbf{T} = (v_i(T_1), \dots, v_i(T_i))$ (ordered list)

 $\textbf{L} \| \textbf{K}$: ordered set obtained by concatenation

 $V(\mathbf{L}||\mathbf{K}) = V(\mathbf{K})\Pi(\mathbf{K}, \mathbf{L})V(\mathbf{L})$

 $\sigma_{f K}$: signature of the permutation ${f P}\mapsto {f K}\|({f P}\setminus {f K})$

 $\sigma_{\textbf{L}}$: signature of the permutation $\textbf{Q}\mapsto \textbf{L}\|(\textbf{Q}\setminus \textbf{L})$

New expression of the double sums.

$$\operatorname{Sylv}^{k,\ell}(P,Q)(U) = \sum_{\substack{\mathsf{K} \subset_k \mathsf{P} \\ \mathsf{L} \subset_\ell \mathsf{Q}}} \sigma_{\mathsf{K}} \sigma_{\mathsf{L}} \frac{V(\mathsf{Q} \setminus \mathsf{L} |\!|\!| \mathsf{P} \setminus \mathsf{K}) V(\mathsf{L} |\!|\!| \mathsf{K} |\!|\!| U)}{V(\mathsf{P}) V(\mathsf{Q})}.$$

New definition also does not make sense when there are multiple roots.

Generalized Vandermonde: an example

Two rooots x_1 (double) and x_2 (triple),

$$x_{1,j} = (x_1, j), j = 0, 1, x_{2,j} = (x_2, j), j = 0, 1, 2$$

$$\mathbf{P} = \{x_{1,0}, x_{1,1}, x_{2,0}, x_{2,1}, x_{2,2}\}$$

$$V(X_{\mathbf{P}}) = \det \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ X_{1,0} & X_{1,1} & X_{2,0} & X_{2,1} & X_{2,2} \\ X_{1,0}^2 & X_{1,1}^2 & X_{2,0}^2 & X_{2,1}^2 & X_{2,2}^2 \\ X_{1,0}^3 & X_{1,1}^3 & X_{2,0}^3 & X_{2,1}^3 & X_{2,2}^3 \\ X_{1,0}^4 & X_{1,1}^4 & X_{2,0}^4 & X_{2,1}^4 & X_{2,2}^4 \end{pmatrix}$$

$$V[\mathbf{P}] = \partial^{[\mathbf{P}]}(V(X_{\mathbf{P}}))(\mathbf{P}) = \det \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ x_1 & 1 & x_2 & 1 & 0 \\ x_1^2 & 2x_1 & x_2^2 & 2x_2 & 1 \\ x_1^3 & 3x_1^2 & x_2^3 & 3x_2^2 & 3x_2 \\ x_1^4 & 4x_1^3 & x_2^4 & 4x_2^3 & 6x_2^2 \end{pmatrix}$$

$$=(x_2-x_1)^6\neq 0$$

$$\mathbf{P} = \{x_{1,0}, \dots, x_{1,\mu_1-1}, \dots, x_{k,0}, \dots, x_{k,\mu_k-1}\},\$$

$$x_{i,j} = (x_i, j), x_i \neq x_{i'} \text{ for } i \neq i', \sum_{i=1}^k \mu_i = p.$$

$$\mathbf{Q} = \{y_{1,0}, \dots, y_{1,\nu_1-1}, \dots, y_{\ell,0}, \dots, y_{\ell,\nu_\ell-1}\},\$$

$$y_{i,j} = (y_i, j), y_i \neq y_{i'} \text{ for } i \neq i', \sum_{i=1}^\ell \nu_i = q.$$

$$X_{\mathbf{P}} = \{X_{1,0}, \dots, X_{1,\mu_1-1}, \dots, X_{k,0}, \dots, X_{k,\mu_k-1}\},\$$

$$Y_{\mathbf{O}} = \{Y_{1,0}, \dots, Y_{1,\nu_k-1}, \dots, Y_{k,0}, \dots, Y_{k,\nu_k-1}\}$$

Generalized Vandermonde

For
$$f \in K[V][U]$$
,

$$\frac{\partial^{[i]}f}{\partial U^i} = \frac{1}{i!} \frac{\partial^i f}{\partial U^i}$$

For $f \in K[X_{\mathbf{P}}]$ and $\mathbf{K} \subset_k \mathbf{P}$, with $X_{\mathbf{K}} = \{X_{i,j} | x_{i,j} \in \mathbf{K}\}$, define $\partial^{[\mathbf{K}]}(f)$ by

$$\partial^{[\emptyset]} f = f, \quad \text{for } \mathbf{K} = \mathbf{K}' \| \left\{ x_{i,j} \right\}, \partial^{[\mathbf{K}]} f = \frac{\partial^{[V]} \partial^{[\mathbf{K}']} f}{\partial X_{i,j}^j}$$

Definition (Generalized Vandermonde determinant)

$$V[\mathbf{P}] = \partial^{[\mathbf{P}]}(V(X_{\mathbf{P}}))(\mathbf{P}).$$

$$V[\mathbf{P}] = \prod_{1 \le i \le k} (x_j - x_i)^{\mu_i \mu_j}$$

General Sylvester double sums

Definitions did not make sense when there are mulltiple roots.

0

use L'Hôpital's Rule: derivate in a relevant way numerator and denominator.

$$V[\mathbf{L}||\mathbf{K}||U) = \partial^{[\mathbf{K}]}\partial^{[\mathbf{L}]}V(Y_{\mathbf{L}}||X_{\mathbf{K}}||U)(\mathbf{L}||\mathbf{K})$$

(derivation with respect to X_P , Y_Q not with respect to U)

Definition (Sylvester double sums)

$$\operatorname{Sylv}^{k,\ell}(P,Q)(U) = \sum_{\substack{\mathsf{K} \subset_k \mathsf{P} \\ \mathsf{L} \subset e \mathsf{Q}}} \sigma_{\mathsf{K}} \sigma_{\mathsf{L}} \frac{V[\mathsf{Q} \setminus \mathsf{L} |\!| \mathsf{P} \setminus \mathsf{K}] V[\mathsf{L} |\!| \mathsf{K} |\!| U)}{V[\mathsf{P}] V[\mathsf{Q}]}$$

Subresultants, P, Q non monic

Subresultants are defined by minors of the Sylvester-Habicht matrix and are proportional to the polynomials in the remainder sequence.

R = -Rem(P, Q), $\varepsilon_i = (-1)^{i(i-1)/2}$. The following is well known

Proposition (induction for subresultants)

- 1. $Sres_{p-1}(P, Q)(U) = Q(U)$
- 2. $Sres_j(P, Q)(U) = 0$ q < j < p 1
- 3. $\operatorname{Sres}_q(P, Q)(U) = \varepsilon_{p-q} \operatorname{lc}(Q)^{p-q-1} Q(U)$
- 4. $\operatorname{Sres}_{j}(P, Q)(U) = \varepsilon_{p-q} \operatorname{lc}(Q)^{p-r} \operatorname{Sres}_{j}(Q, R)(U)$ if j < q, $R \neq 0$
- 5. $Sres_i(P, Q)(U) = 0$ if j < q, R = 0

Our aim for Sylvester double sums, P, Q non monic

Definition in the non monic case:

$$\operatorname{Sylv}^{k,\ell}(P,Q)(U) = \operatorname{lc}(P)^{q-j}\operatorname{lc}(Q)^{p-j}\operatorname{Sylv}^{k,\ell}\left(\frac{P}{\operatorname{lc}(P)},\frac{Q}{\operatorname{lc}(Q)}\right)(U)$$

Proposition (induction for double sums)

1. Sylv^{$$p-1,0$$}(P,Q,U) = $(-1)^{p-1}$ lc(P) ^{$q-p+1$} $Q(U)$

2. Sylv<sup>$$j$$
,0</sup>(P , Q)(U) = 0, $q < j < p - 1$

3. Sylv^{q,0}
$$(P, Q)(U) = (-1)^{q(p-q)} lc(Q)^{p-q-1} Q(U)$$

4.
$$\operatorname{Sylv}^{j,0}(P,Q)(U) = (-1)^{q(p-q)} \operatorname{lc}(Q)^{p-r} \operatorname{Sylv}^{j,0}(Q,R)(U)$$
 if $j < q, R \neq 0$

5. Sylv<sup>$$j$$
,0</sup>(P , Q)(U) = 0 if $j < q$, $R = 0$

What we want to do

- Prove that $\operatorname{Sylv}^{k,\ell}(P,Q)(U)$ is proportional to $\operatorname{Sylv}^{j,0}(P,Q)(U)$, $j=k+\ell$
- Using the two propositions (induction for subresultants, induction for double sums) to prove that $\operatorname{Sres}_j(P,Q)(U)$ and $\operatorname{Sylv}^{j,0}(P,Q)(U)$ coincide up to sign.
- We would like to use interpolation to prove equalities in the induction for double sums but there are $\binom{p}{k}$ subsets of **P** or cardinal k! Solution: add variables!

Classical Hermite Interpolation

U: one indeterminate

Proposition

Given an ordered list

$$\mathbf{q} = (q_{1,0}, \dots, q_{1,\mu_1-1}, \dots, q_{m,0}, \dots, q_{m,\mu_m-1})$$

of p numbers, there is one and only one polynomial of degree at most p-1 satisfying the property

for all
$$1 \le i \le m$$
, for all $0 \le j < \mu_i$, $Q^{[j]}(x_i) = q_{i,j}$.

(generalizes Classical Lagrange interpolation)

Classical Hermite Interpolation

U: one indeterminate . Hermite interpolation basis (in an example)

Two rooots x_1 (double) and x_2 (triple),

$$\mathbf{P} = \{x_{1,0}, x_{1,1}, x_{2,0}, x_{2,1}, x_{2,2}\}$$

$$\mathcal{V}[\mathbf{P}||U) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ x_1 & 1 & x_2 & 1 & 0 & U \\ x_1^2 & 2x_1 & x_2^2 & 2x_2 & 1 & U^2 \\ x_1^3 & 3x_1^2 & x_2^3 & 3x_2^2 & 3x_2 & U^3 \\ x_1^4 & 4x_1^3 & x_2^4 & 4x_2^3 & 6x_2^2 & U^4 \end{pmatrix}$$

them remove one of the five first columns, compute the determinant and divide by $V[\mathbf{P}]$: Hermite interpolation basis of polynomials of degree ≤ 4 .

Multisymmetric Hermite Interpolation

U: a block of indeterminates of cardinality p - k

Proposition

$$\mathcal{B}_{\mathbf{P},k} = \left\{ rac{V[\mathbf{K}||\mathbf{U})}{V[\mathbf{P}]V(\mathbf{U})}
ight\}$$

indexed by $\mathbf{K} \subset_k \mathbf{P}$ is a linear basis of the set of symmetric polynomials in **U** of multidegree at most k, \ldots, k .

If g is such a symmetric polynomial in U,

$$g = \sum_{\mathbf{K} \subset_k \mathbf{P}} \sigma_{\mathbf{K}} \partial^{[\mathbf{P} \setminus \mathbf{K}]} (g(X_{\mathbf{P} \setminus \mathbf{K}}) V(X_{\mathbf{P} \setminus \mathbf{K}})) (\mathbf{P} \setminus \mathbf{K}) \frac{V[\mathbf{K}||\mathbf{U})}{V[\mathbf{P}] V(\mathbf{U})}$$

(our definition, generalizing Multisymmetric Lagrange interpolation used by T. Krick, A. Szanto, M. Valdetarro)

As a corollary: classical Hermite Interpolation.

Multi Sylvester double sums

Add variables to be able to prove equalities by interpolation: idea borrowed from T. Krick, A. Szanto, and M. Valdetarro (2016)

Definition (Multi Sylvester double sums)

P and *Q*: monic polynomials, $j = k + \ell$, $\#\mathbf{U} = p - j$.

$$MSylv^{k,\ell}(P,Q)(\mathbf{U}) = \sum_{\substack{\mathbf{K} \subset_{k}\mathbf{P} \\ \mathbf{L} \subset_{\ell}\mathbf{Q}}} \sigma_{\mathbf{K}}\sigma_{\mathbf{L}} \frac{V[\mathbf{Q} \setminus \mathbf{L} || \mathbf{P} \setminus \mathbf{K}]V[\mathbf{L} || \mathbf{K} || \mathbf{U})}{V[\mathbf{P}]V[\mathbf{Q}]V(\mathbf{U})}$$
(1)

(derivation with respect to X_P , Y_Q not with respect to **U**)

Proposition

$$\operatorname{Sylv}^{k,\ell}(P,Q)(U)$$
 is the coefficient of $\prod_{U'\in \mathbf{U}'} U'^j$ in

$$MSylv^{k,\ell}(P,Q)(U||U'), \#U' = p - j - 1$$

Multi Sylvester double sums for $j \ge q$

P and Q two monic polynomials

Proposition

if
$$\ell \leq q \leq k + \ell = j < p$$
 then

$$\begin{pmatrix} q \\ \ell \end{pmatrix} \text{MSylv}^{j,0}(P,Q,\mathbf{U}) = (-1)^{\ell(p-j)} \text{MSylv}^{k,\ell}(P,Q,\mathbf{U})$$

Proof rather easy using interpolation! By taking a relevant coefficient,

Corollary

P and *Q* two monic polynomials; if $\ell \le q \le k + \ell = j < p$ then

$$\left(\begin{array}{c} q \\ \ell \end{array}\right) \mathrm{Sylv}^{j,0}(P,Q,\textbf{U}) = (-1)^{\ell(p-j)} \mathrm{Sylv}^{k,\ell}(P,Q,\textbf{U})$$

Proposition

If
$$q \le j \le p-1$$

$$\mathrm{MSylv}^{j,0}(P,Q)(\boldsymbol{\mathsf{U}}) = (-1)^{j(p-j)} lc(P)^{q-j} \prod_{U \in \boldsymbol{\mathsf{U}}} Q(U)$$

Proof "Easy", using multisymmetric Hermite interpolation

$$\prod_{U \in \mathbf{U}} Q(U) = \sum_{\mathbf{K} \subset_j \mathbf{P}} \sigma_{\mathbf{K}} \partial^{[\mathbf{P} \setminus \mathbf{K}]} \left(V(X_{\mathbf{P} \setminus \mathbf{K}}) \prod_{X \in X_{\mathbf{P} \setminus \mathbf{K}}} Q(X) \right) (\mathbf{P} \setminus \mathbf{K}) \frac{V[\mathbf{K}||\mathbf{U})}{V[\mathbf{P}] V(\mathbf{U})}$$
By taking a relevant coefficient.

By taking a relevant coefficient,

Corollary

1. Sylv^{$$p-1,0$$}(P,Q,U) = $(-1)^{p-1}$ lc(P) ^{$q-p+1$} $Q(U)$

2. Sylv<sup>$$j$$
,0</sup>(P , Q , U) = 0, $q < j < p - 1$,

3. Sylv^{q,0}
$$(P, Q, U) = (-1)^{q(p-q)} lc(Q)^{p-q-1} Q$$

Multi Sylvester double sums for $\mathbf{0} \leq \mathbf{j} < \mathbf{q}$

Proposition

If $k \in \mathbb{N}$, $\ell \in \mathbb{N}$, $k + \ell = j < q$ and **U** a set of p - j indeterminates.

$$\mathrm{MSylv}^{k,\ell}(P,Q)(\mathbf{U}) = \begin{pmatrix} j \\ k \end{pmatrix} (-1)^{\ell(p-j)} \mathrm{MSylv}^{j,0}(P,Q)(\mathbf{U}).$$

The proof is complicated and uses the Exchange Lemma from T. Krick, A. Szanto, and M. Valdetarro (2016). By taking a relevant coefficient,

Corollary

If
$$k \in \mathbb{N}$$
, $\ell \in \mathbb{N}$, $k + \ell = j < q$,

$$\operatorname{Sylv}^{k,\ell}(P,Q)(U) = \begin{pmatrix} j \\ k \end{pmatrix} (-1)^{\ell(p-j)} \operatorname{Sylv}^{j,0}(P,Q)(U).$$

Sylvester double sums and remainder

It remains to prove for P and Q non monic

Proposition

- $\operatorname{Sylv}^{j,0}(P,Q)(U) = (-1)^{q(p-q)}\operatorname{lc}(Q)^{p-r}\operatorname{Sylv}^{j,0}(Q,R)(U)$ if $j < q, R \neq 0$
- $Sylv^{j,0}(P,Q)(U) = 0$ if j < q, R = 0

The proof uses as essential ingredient

Lemma

$$R = -\text{Rem}(P, Q)$$
. For every y_i such that $Q(y_i) = 0$, $0 \le j \le \nu_i - 1$, $P^{[j]}(y_i) = -R^{[j]}(y_i)$

And also the proportionnality between $\operatorname{Sylv}^{j,0}(Q,R)(U)$ and $\operatorname{Sylv}^{0,j}(Q,R)(U)$.

Conclusion

- We introduced general Sylvester double sums making sense when there are multiplicities using Generalized Vandermonde determinants
- We proved that $\operatorname{Sylv}^{k,\ell}(P,Q)(U)$ is proportional to $\operatorname{Sylv}^{j,0}(P,Q)(U), j=k+\ell$ in all cases
- We proved that $\operatorname{Sylv}^{j,0}(P,Q)(U)$ and $\operatorname{Sres}_j(P,Q)(U)$ are proportional for $q \leq j \leq p$ and satisfy a similar induction for j < q when we replace P,Q by Q,R
- We used this result to prove by induction that $\operatorname{Sylv}^{j,0}(P,Q)(U)$ and $\operatorname{Sres}_j(P,Q)(U)$ are proportional!
- Introducing Multsymmetric Hermite Interpolation and Multi Sylvester double sums (generalizing the use of Multisymmetric Lagrange Interpolation [KSV]) and using the Exchange Lemma from [KSV] was essential in our proofs.

References

[BPR] Basu, S., Pollack, R., and Roy, M.-F. (2003). Algorithms in real algebraic geometry. Springer.

[KSV] Krick, T., Szanto, A., and Valdetarro, M. (2016).

Symmetric interpolation, exchange lemma and double sums.

Communications in Algebra, 45.

[S1840] Sylvester, J. J. (1840). Note on elimination.

Philosophical Magazine, XVII.

[S1853] Sylvester, J. J. (1853). A theory of the syzygetic relations of two rational integral functions.

[RS] M.-F. Roy, A. Szpirglas. Sylvester double sums, subresultants and symmetric multivariate Hermite interpolation, Journal of Symbolic Computation, Volume 96,

January–February 2020, Pages 85-107 (preliminary version, arXiv:1805.10609).

