./

Françoise Delon, Marie-Hélène Mourgues Classification of \aleph_0 -categorical C-minimal pure C-sets, Annals of pure and applied logic, February 2024

A <u>C-relation</u> is a ternary relation satisfying the four axioms:

- 1. $C(x, y, z) \rightarrow C(x, z, y)$
- 2. $C(x, y, z) \rightarrow \neg C(y, x, z)$
- 3. $C(x, y, z) \rightarrow [C(x, y, w) \lor C(w, y, z)]$
- 4. $x \neq y \rightarrow C(x, y, y)$.

A C-set is a set equipped with a C-relation.

Examples:

- Trivial C-relation: C(x, y, z) si $x \neq y = z$.
- C-relation from an order: C(x, y, z) if (x < y and x < z) or $y = z \neq x)$
- C-relation from an ultrametric distance $(d(x,y) \le max(d(x,z),d(y,z)))$: C(x,y,z) if d(x,y) < d(y,z)
- Tree

 $C(\alpha, \beta, \gamma)$ if α and β "branch" below β and γ

A good tree is an ordered set satisfying:

- For all $x \in T$, the set $\{y; y \le x\}$ is linearly ordered
- it is a meet semi-lattice i.e. any two elements $x \neq y$ have an infimum, or meet, $x \wedge y$
- it has maximal elements, or leaves, everywhere (i.e. $\forall x, \exists y \ (y \ge x \land \neg \exists z > y)$)
- any of its elements is a leaf or a node (i.e. of form $x \wedge y$ for some distinct x and y).

 (T, \leq, \wedge, L, N) N: set of nodes L: set of leaves

•/

Let T be a good tree.

Let α be a leaf and let $br(\alpha) =: \{x \in N; x < \alpha\} \cup \{\alpha\}$ be the branch of α .

The set M(T) of the branches with a leaf is identified with the set L of leaves and carries a canonical C-relation:

$$C(\alpha, \beta, \gamma)$$
 if $\alpha \cap \beta = \alpha \cap \gamma \subset \beta \cap \gamma$

Good tree T(M)

Conversely, given a C-set M, there is a unique good tree T(M) such that M is isomorphic to the set of branches with a leaf equipped with the canonical C-relation (Adeleke-Neumann, 98).

The set of leaves of T(M) is M

The set of nodes is a quotient of M^2 .

Examples:

linear order

In these examples all the leaves are isolated i.e. have a predecessor.

C-sets and good trees are bi-interpretable classes.

Let M be a C-set then, M and L(T(M)) (the set of leaves of T(M)) are definably isomorphic. Let T be a good tree then T and T(M(T)) are definably isomorphic.

C-minimality

(Haskell, Macpherson, Steinhorn, 94)

A *C*-structure is a *C*-set possibly equipped with additional structure.

A C-structure $\mathcal M$ is called C-minimal if any definable subset of $\mathcal M$ is definable by a quantifier free formula in the pure language $\{C\}$ and it holds for any elementary equivalent structure.

Cones and thick cones

Let M be a C-set, T(M) its canonical good tree.

Notations: latin letters: x, y, ... for nodes in T(M)

greek letters: α , β , ... for leaves in T(M) or elements of M.

In T(M)

- Cone of α at x: $\Gamma(x,\alpha) = \{t \in T(M); x \land t > x\}$ (= cone of y at x: $\Gamma(x,y)$
- Thick cone at x: $\Gamma(x) = \{t \in T(M); t \ge x\}$

In M

- Cone of α at x: $\mathcal{C}(x,\alpha) = \{\beta \in M; \alpha \land \beta > x\}$
- -Thick cone at x: $\mathcal{C}(x) = \{\beta \in M; \beta \land x = x\}$

Cones and thick cones

Let M be a C-set, T(M) its canonical good tree.

Notations: latin letters: x, y, ... for nodes in T(M)

greek letters: α , β , ... for leaves in T(M) or elements of M.

In T(M)

- Cone of α at x: $\Gamma(x,\alpha) = \{t \in T(M); x \land t > x\}$ (= cone of y at x: $\Gamma(x,y)$
- Thick cone at x: $\Gamma(x) = \{t \in T(M); t \ge x\}$

<u>In *M*</u>:

- Cone of α at x: $\mathcal{C}(x,\alpha) = \{\beta \in M; \alpha \land \beta > x\}$
- -Thick cone at x: $\mathcal{C}(x) = \{\beta \in M; \beta \land x = x\}$

Characterization of *C*-minimality

A C-structure is C-minimal iff any definable subset of M is a boolean combination of cones and thick cones.

Haskell-Macpherson, 94: If a *C*-structure *M* is *C*-minimal, each branch $br(\alpha)$ with a leaf of T(M) is o-minimal in T(M).

Purpose of the talk

We say that a structure is \aleph_0 -categorical if its complete theory has only one countable model (up to isomorphism).

We say that a structure is *indiscernible* if it realizes only one complete 1-type over \emptyset . Let M be a \aleph_0 -categorical C-minimal structure then by Ryll-Nardzewski's Theorem: M is a finite union of indicernible subsets.

Article outline:

- I) Classification of \aleph_0 -categorical *C*-minimal and **indiscernible** pure *C*-sets
- II) General classification

I am only going to talk about part I.

So, from now on \mathcal{M} is an indiscernible, finite or \aleph_0 -categorical pure C-structure, and T(M) is its canonical good tree.

Theorem 1

Let \mathcal{M} be an indiscernible finite or \aleph_0 -categorical C-structure, Let $T(\mathcal{M})$ be its canonical good tree. Then there exists an integer $n \geq 1$ such that for any leaf α of T, $br(\alpha) = \bigcup_{j=1}^n I_j(\alpha) \cup \{\alpha\}$ with $I_j(\alpha) < I_{j+1}(\alpha)$, where the I_j are one-typed intervals. This decomposition is unique if we assume that the $I_j(\alpha)$ are maximal one-typed, Possible forms of each $I_j(\alpha)$ are $\{x\}$, [x,y[and [x,y]. The decomposition is independent of the leaf α , and coincide below the meeting node of two leaves.

- Ryll-Nardzewski Theorem and \aleph_0 -categoricity imply a finite number of p-types over \emptyset in M.
- finite number of p-types in T(M)
- T(M) is finite or \aleph_0 -categorical.
- $N_T = N_1 \cup N_2 \cup \cdots \cup N_m$ where the nodes of N_i have the same complete type over \emptyset .
- For each α , $br(\alpha) \cap N_i$'s are definable.
- By o-minimality of the branches, for each α and each i, $br(\alpha) \cap N_i$ is a finite union of singletons and intervals.
- If such an interval has a first element then this interval is in fact a singleton.

Hence, for a given leaf α , $br(\alpha)$ is the order sum of finitely many maximal one-typed intervals, and by indiscernibility, the number of such one-typed intervals, the form of each of them, and the tree-type of its elements, depend only on its index and not on the branch.

Inner cone: We say that a cone Γ at x is an inner cone if the two following conditions are realized:

- 1. x has no successor on any branch of Γ .
- 2. There exists $t \in \Gamma$ (equivalently for all t) s.t., for any $t' \in T$ with x < t' < t, t' is of same tree-type as x.

Border cone: Otherwise, we say that Γ is a border cone.

 Γ_1 is an inner cone, Γ_2 and Γ_3 are border cones.

The <u>color</u> of a node x of a tree T is the ordered pair $(m, \mu) \in (\mathbb{N} \cup \{\infty\})^2$ where m is the number of border cones at x and μ the number of inner cones at x.

The color of a node of T(M) is \emptyset -definable in the pure order of T(M)

same type \Rightarrow same color

One-colored interval on a branch $br(\alpha)$:

- (0): $I = \{x\}$ where x if of color (m, 0), $m \ge 2$
- (1.a): I =]x, y[where any element of I is of color $(0, \mu), \mu \ge 2$
- -(1.b): I =]x, y] where any element of I is of color (m, μ) , $m, \mu \ge 1$.

a one-typed interval is a one-colored interval

In order to describe the theory of the canonical tree of an indiscernible \aleph_0 -categorical or finite C-minimal C-structure, we define now precolored good trees which are constructed from the conclusion of Theorem 1, replacing "one-typed interval" by the (in general different) notion of "one-colored interval".

We say that T is a <u>precolored good tree</u> if there is no node of color (∞, ∞) and there exists an integer n, such that for all $\alpha \in L$:

- (1) the branch $br(\alpha)$ can be written as a disjoint union of its leaf and n one-colored intervals $br(\alpha) = \bigcup_{j=1}^{n} I_j(\alpha) \cup \{\alpha\}$, with $I_j(\alpha) < I_{j+1}(\alpha)$.
- (2) The $I_j(\alpha)$ are maximal one-colored, that is, $I_j(\alpha) \cup I_{j+1}(\alpha)$ is not a one-colored interval, and for all $j \in \{1, \dots, n\}$, the color of $I_j(\alpha)$ is independent of α .
- (3) For any $\alpha, \beta \in L$ and $j \in \{1, \dots, n\}$, if $\alpha \land \beta \in I_j(\alpha)$, then $\alpha \land \beta \in I_j(\beta)$, $I_j(\alpha) \cap I_j(\beta)$ is an initial segment of both $I_j(\alpha)$ and $I_j(\beta)$; and for any i < j, $I_j(\alpha) = I_j(\beta)$.

The integer n, which is unique by maximality of the basic one-colored intervals, is called the <u>depth</u> of the precolored good tree T.

3 examples of a branch in the case of a precolored of depth 3

We denote by $e_j(\alpha)$ the lowest bound of the interval I_j and by $p(\alpha)$ the predecessor of α if it is isolated.

By Theorem 1 if M is C-minimal, \aleph_0 -categorical or finite and indiscernible then $\mathcal{T}(M)$ is precolored.

A border cone is an isolated leaf An inner cone is infinite cone

Form (0) $m = 3, \mu = 0$

Form (1.b) $m = 2, \mu = 2$

Form (1.a) $m = 0, \mu = 2$

Définition 1

T is 1-colored when T is of the form:

- (0) a root and m isolated leaves $(m \ge 2)$
- (1.a) for any leaf α of T, $]-\infty, \alpha[$ is densely ordered and at each node of T there are exactly $\mu \geq 2$ cones, all infinite.
- (1.b) for any leaf α of T, α has a predecessor, the node $p(\alpha)$, $]-\infty,p(\alpha)]$ is densely ordered and at each node of T there are exactly m isolated leaves and μ infinite cones.

The ordered pair (m, μ) is called the branching color of the 1-colored tree T.

In the cases (0) and (1.b) all leaves are isolated, in the cas 1.a) all leaves are non isolated. We call the ordered pair (m, μ) the branching color.

A precolored tree of depth 1 is a one colored good tree.

For m and μ in $\mathbb{N} \cup \{\infty\}$ such that $m + \mu \geq 2$, we denote by $\Sigma_{(m,\mu)}$ the set of axioms in the language $\mathcal{L}_1 := \{L, N, \leq, \wedge\}$ describing 1-colored good trees of branching color (m, μ) , and by S_1 the set of all these \mathcal{L}_1 -theories, $S_1 := \{\Sigma_{(m,\mu)} : (m,\mu) \in (\mathbb{N} \cup \{\infty\}) \times (\mathbb{N} \cup \{\infty\}) \text{ with } m + \mu \geq 2\}$.

Theorem 2

Any theory in S_1 is \aleph_0 -categorical, hence complete. Moreover, it admits quantifier elimination in a natural language, $\Sigma_{(m,0)}$ in $\{L,N\}$, $\Sigma_{(0,\mu)}$ in \mathcal{L}_1 and $\Sigma_{(m,\mu)}$ with $m,\mu\neq 0$ in $\mathcal{L}_1^+=\{L,N,\leq,\wedge,p\}$

M is C-min., \aleph_0 -categ. indiscernible with all the nodes of same type $\Longrightarrow \mathcal{T}(M)$ is precolored of depth 1

 $= \bigvee_{T(M) \text{ is } 1\text{-colored}}$

For any node of a 1-colored good tree: Color = branching color = type

Let T and T_0 be two trees. We define roughly $T \rtimes T_0$, the "extension of T by T_0 ", as the tree consisting of T in which each leaf is replaced by a copy of T_0 . We require some conditions:

- T_0 is a 1-colored good tree
- Either all leaves of T are isolated or all leaves of T are non isolated.
- If T has non isolated leaves, T_0 should have a root.

Let L_T and N_T be respectively the set of leaves and nodes of T, L_0 and N_0 the set of leaves and nodes of T_0 .

As a set, $T \times T_0$ is the disjoint union of N_T and $L_T \times T_0$.

$$N_{T \rtimes T_0} = N_T \cup \{(\alpha, t), \alpha \in L_T, \ t \in N_0\}$$

$$L_{T \rtimes T_0} = \{(\alpha, \beta), \alpha \in L_T, \ \beta \in L_0\}$$

20/

Two branches of T_1 of type (0,2) $T_0(3,0)$

Equivalence relation on $T \rtimes T_0$

The set of nodes N_T embedds canonically in $T \rtimes T_0$, and for each leave α there is an embedding of T_0 "above" α .

However, in the case where T_0 has no root, T does not appear as a subset of $T \times T_0$ but as a quotient of $T \times T_0$.

More precisely, if we define an equivalence relation on $T \rtimes T_0$ by for any $x \in N_T$, $cl(x) = \{x\}$ and for any $(\alpha, t) \in L_T \times T_0$, $cl(\alpha, t) = \{\alpha\} \times T_0$, then $T \rtimes T_0 / \sim$ and T are isomorphic good trees.

T with non isolated leaves T_0 with a root

T with isolated leaves T_0 with a root

T with isolated leaves T_0 with no root

For simplicity, I suppose now that T and T_0 are 1-colored good trees with complete theory Σ and Σ_0 respectively.

Let $\mathcal{L}_2^+ = \{ \leq, \wedge, N, L, e, E, E_{\geq}, p \}$ where e is a partial function, E = Im(e), $E_{\geq} = Dom(e)$. For each $\alpha \in L_T$, $e(\alpha)$ must be interpretated as the node where T_0 plugs on $br(\alpha)$. More precisely:

If T_0 has a root r_0 , $Dom(e) = L_T \times T_0$, $e(\alpha, t) = (\alpha, r_0)$. If T_0 has no root (recall that in this case all the leaves of T must be isolated), $Dom(e) = L_T \times T_0 \cup p(L_T)$, $e(\alpha, t) = p(\alpha)$

Theory $\Sigma \rtimes \Sigma_0$. :

- Good trees
- $E_{>} = Dom(e)$
- -E = Im(e)
- $-L \subset Dom(e), E \cap L = \emptyset$
- $-\forall x \in Dom(e), e(x) \leq x$
- for all x, $cl(x) = \{x\}$ ou $cl(x) \equiv T_0$
- $T \rtimes T_0 / \sim \equiv T$

 $\Sigma \rtimes \Sigma_0$ is a complete axiomatization of the theory of $T \rtimes T_0$, has a unique finite or countable model, eliminates quantifier in \mathcal{L}_2^+ , $M(T \rtimes T_0)$ est C-minimal.

Induction: solvable trees

A <u>solvable good tree</u> is either a singleton or a tree of the form $(...(T_1 \times T_2) \times \cdots T_{n-1}) \times T_n$ for some integer $n \ge 1$, where T_1, \cdots, T_n are 1-colored good trees such that, for each $i, 1 \le i \le n-1$, if T_i is of type (1.a) then T_{i+1} is of type (0).

- Associativity: we write $T_1 \rtimes T_2 \rtimes \cdots \rtimes T_n$.
- Difficulty: a solvable good tree may have decompositions into iterated extensions of 1-colored good trees of different lengths. So we have to deal with some exceptions.

Let T be a solvable good tree, then there exists a unique $n \in \mathbb{N}$ such that T is an n-solvable good tree, i.e of the form $T_1 \rtimes T_2 \rtimes \cdots \rtimes T_n$ with some additional conditions. We call T a n-solvable good tree.

Langage: $\mathcal{L}_n^+ = \{ \leq, \wedge, L, N, (e_i)_{i=1}^{n-1}, (E_i)_{i=1}^{n-1}, (E_{\geq,i})_{i=1}^{n-1}, p \}$ where the partial functions e_i 's are interpreted as the nodes where the trees T_{i+1} "branche" on the tree $T_1 \rtimes \cdots \rtimes T_i$, in other words the images of the functions e_i indicate the changing of color.

Let T be an n-solvable good tree. Then

- T eliminates quantifiers in the language C_n^+ ,
- functions and predicates of \mathcal{L}_n are definable in the pure order,
- T is finite or \aleph_0 -categorical,
- M(T) is indiscernible and C-minimal.

Let T_1, T_2, \dots, T_n be 1-colored good trees (neither realizing exceptions). Let $\Sigma_1, \Sigma_2, \dots, \Sigma_n$ be their theories in the language \mathcal{L}_1 and $\Sigma_1 \times \dots \times \Sigma_n$ the \mathcal{L}_n -theory defined by induction.

We denote by S_n , $n \ge 1$, the set of all theories $\Sigma_1 \rtimes \Sigma_2 \rtimes \cdots \rtimes \Sigma_n$ in the language \mathcal{L}_n^+ and by S_0 the \mathcal{L}_1 - theory of the singleton.

Colored good trees

For $n \in \mathbb{N} \cup \{\infty\}$, we call *n*-colored any model of a given theory of S_n .

For any integer n any theory in S_n is complete and admits quantifier elimination in the language \mathcal{L}_n . Furthermore S_n is the set of all complete theories of n-colored good trees.

Classification of indiscernible, \aleph_0 -categorical, C-minimal pure C-sets

Theorem 3

Let M be a pure C-set. Then the following assertions are equivalent:

- (i) M is finite or \aleph_0 -categorical, C-minimal and indiscernible
- (ii) T(M) is a precolored good tree.
- (iii) T(M) is a colored good tree.