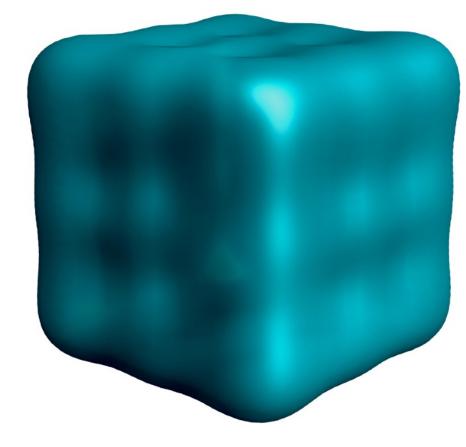
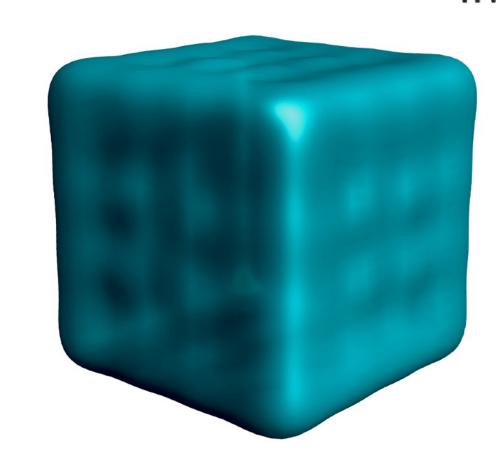
Effective polynomial approximation of starshaped sets



joint work with

Jared Miller and Mauricio Velasco

Chiara Meroni

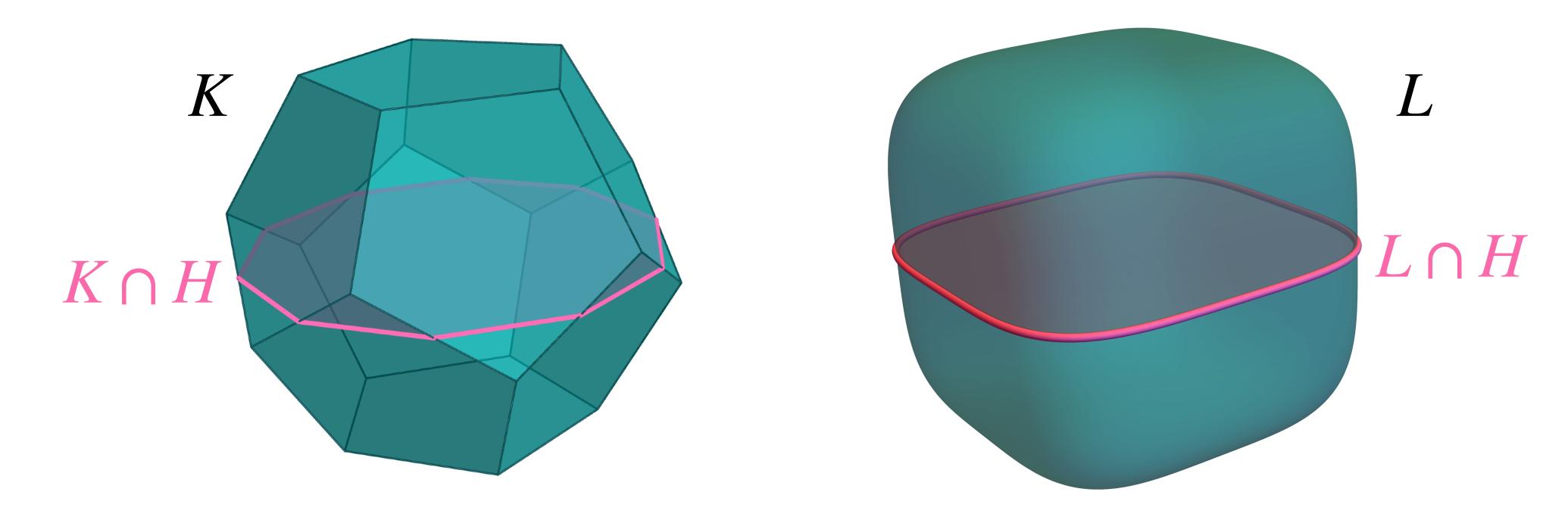


DDG40: Structures Algébriques et Ordonnées

Busemann-Petty problem

 $1956 \longrightarrow 1999$

Let K and L be convex bodies in \mathbb{R}^n . Assume that for every hyperplane H through the origin, $\operatorname{vol}(K \cap H) \leq \operatorname{vol}(L \cap H)$.



Does this imply that $vol(K) \le vol(L)$?

Busemann-Petty problem

 $vol(K) \leq vol(L)$?

In general NOT true!

It holds for convex bodies in \mathbb{R}^n when $n \leq 4$.

Let's refine it:

Bourgain's slicing conjecture (1986):

 $\operatorname{vol}(K) \leq C \operatorname{vol}(L)$,

where C does not depend on n.

Rephrase:

Bourgain's slicing conjecture (1986):

Let $K \subset \mathbb{R}^n$ be a convex body of volume 1. Does there exist a hyperplane H satisfying

$$vol(K \cap H) > \frac{1}{C}$$

where C does not depend on n?

arXiv:2412.15044

Affirmative Resolution of Bourgain's Slicing Problem using Guan's Bound

Boaz Klartag, Joseph Lehec

Building upon

 $\exists \mathbf{T} \text{iV} > \text{math} > \text{arXiv:} 2412.09075$

A note on Bourgain's slicing problem

Qingyang Guan

Large volume slices

ETHzürich

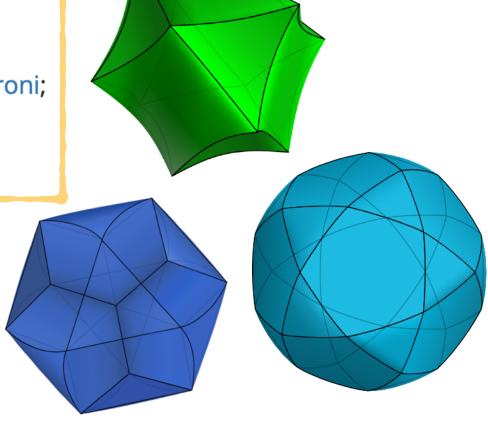
For polytopes: exact poly-time algorithms

The best ways to slice a Polytope

by Marie-Charlotte Brandenburg, Jesús A. De Loera and Chiara Meroni;

Math. Comp. **94** (2025), 1003-1042

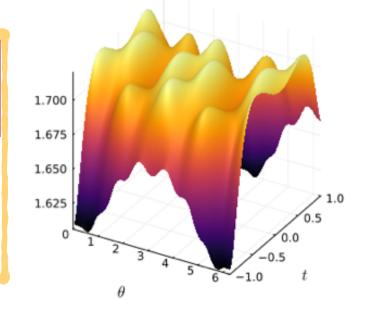
DOI: https://doi.org/10.1090/mcom/4006



TiV > math > arXiv:2403.04438

Maximizing Slice-Volumes of Semialgebraic Sets using Sum-of-Squares Programming

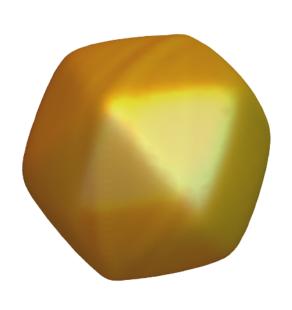
Jared Miller, Chiara Meroni, Matteo Tacchi, Mauricio Velasco



arXiV > math > arXiv:2505.24352

Approximation of starshaped sets using polynomials

Chiara Meroni, Jared Miller, Mauricio Velasco

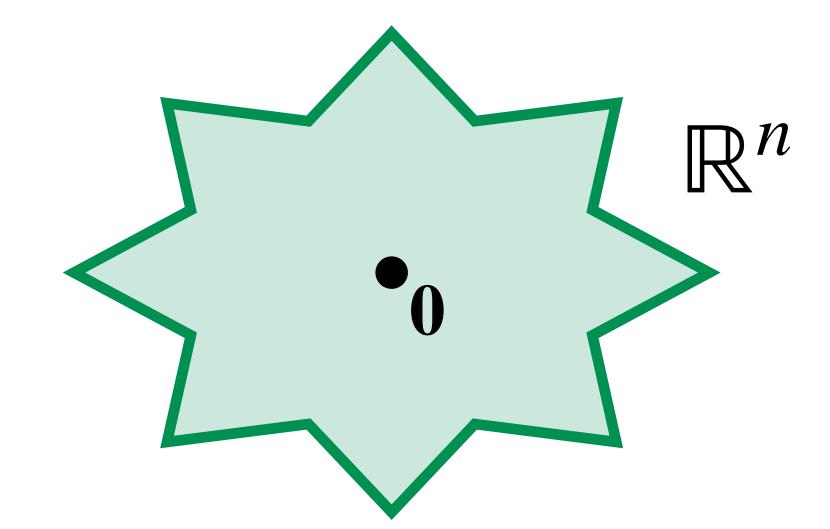


For convex bodies: approximation

Starbodies

Starshaped set (w.r.t. the origin): $x \in L \Rightarrow [0, x] \subset L$

Starbody (w.r.t. the origin): compact starshaped set

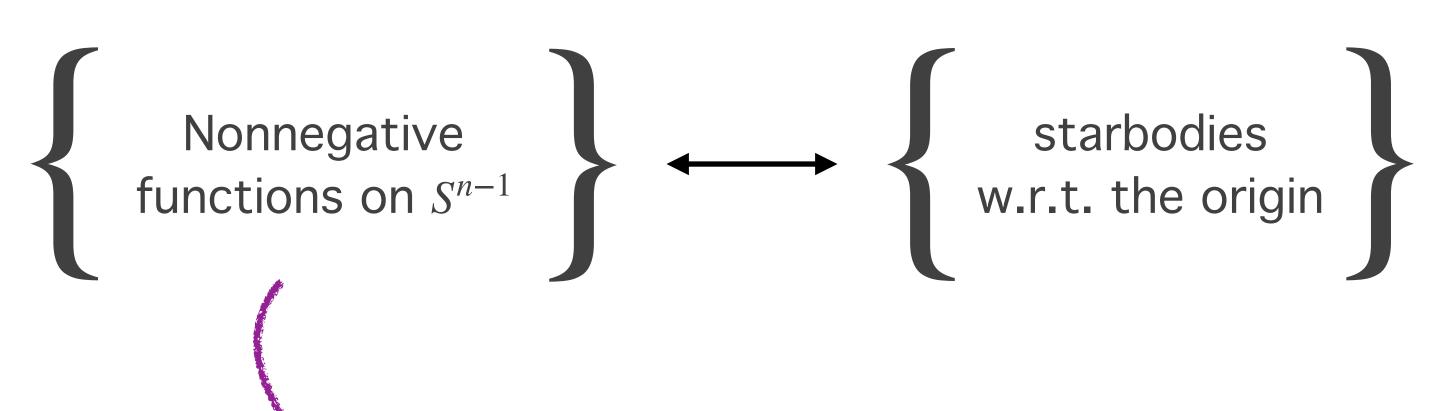


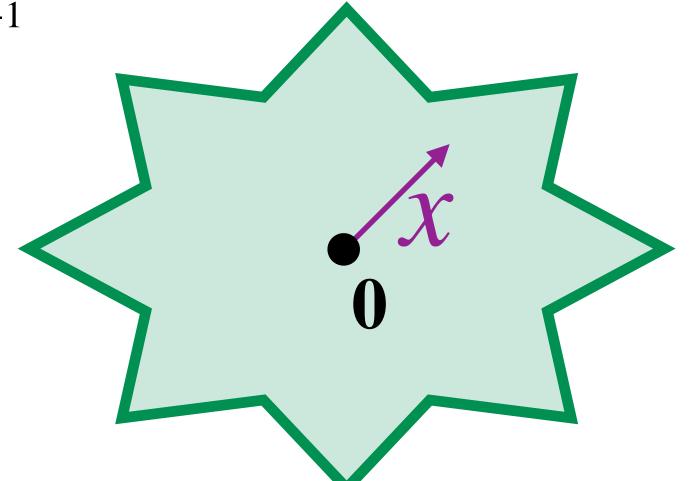
- Q: * How can we describe or approximate starbodies?
 - * How can we compute natural invariants efficiently?
 - * How can we model the space of starbodies?

Radial & gauge functions

Radial function: $\rho_L(x) = \max\{\lambda \in \mathbb{R}_{>0} \mid \lambda x \in L\}$, for all $x \in S^{n-1}$

Gauge function: $\gamma_L(x) = \frac{1}{\rho_L(x)}$, for all $x \in S^{n-1}$

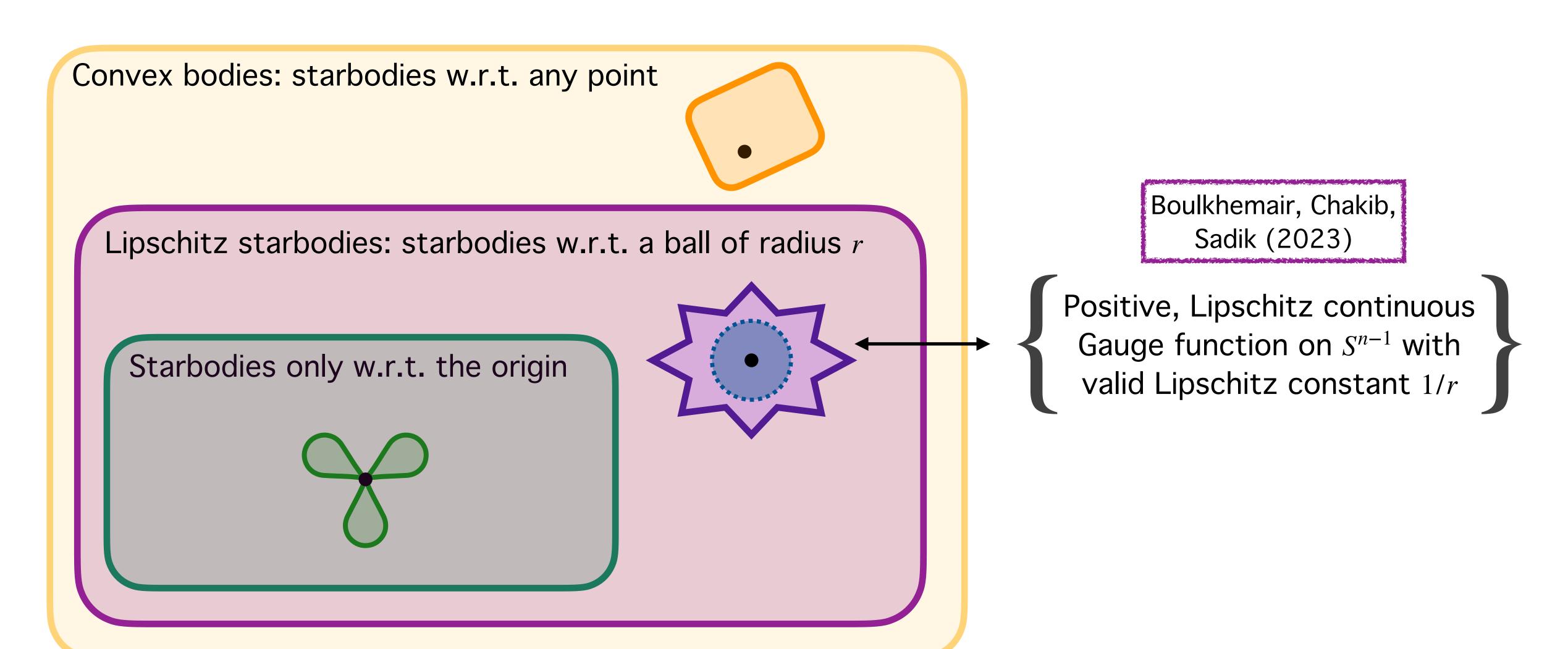




can be wild!

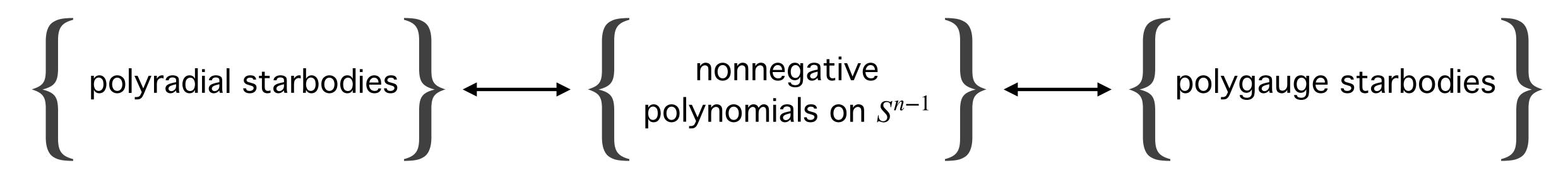
For
$$P = \{x \in \mathbb{R}^n \mid Ax \le 1\}$$
 we have
$$\gamma_P(x) = \max_i A_i \cdot x , \quad \rho_P(x) = \min_i \left\{ \frac{1}{A_i \cdot x} \mid A_i \cdot x > 0 \right\}$$

Nice starbodies



Even nicer starbodies

A polystar body is a starbody whose radial or gauge function is the restriction of a multivariate polynomial to S^{n-1}

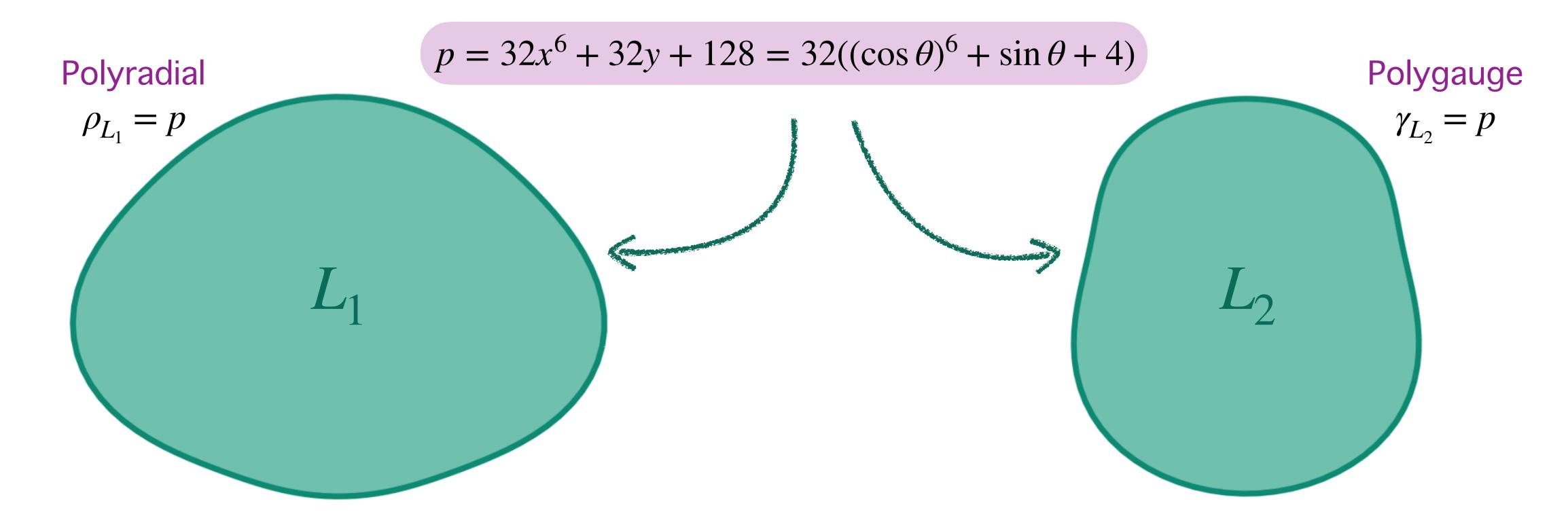


whose radial function is polynomial

whose gauge function is polynomial

Polystar bodies

A polystar body is a starbody whose radial or gauge function is the restriction of a multivariate polynomial to S^{n-1}



Density

Theorem [M,M,V]: The set of polyradial/polygauge bodies is dense in the set of starbodies with continuous radial/gauge function.

Sure, Stone-Weierstrass Theorem

Multiple levels:

* Theoretical

- * Theoretical constructive
- * Sharp approximation guarantees
- * Computational

How can we approximate a starbody using polystar bodies?

Approximation

$$||f - g||_{\infty} = \sup_{x \in S^{n-1}} |f(x) - g(x)|$$

Theorem [M,M,V]: Let f be a Lipschitz function with Lipschitz constant κ on S^{n-1} . Then, there exists an explicit sequence of univariate nonnegative polynomials $\{u_d\}_d$ with $u_d: [-1,1] \to \mathbb{R}$ of degree d such that

$$\|f-T_{u_d}(f)\|_{\infty} \sim \frac{\pi(n-2)}{\sqrt{2}} \frac{\kappa}{d}$$
 as $d \to \infty$,

where
$$T_{u_d}(f)(x) = \int_{S^{n-1}} u_d(\langle x, y \rangle) f(y) d\mu(y)$$
.

This improves a result of Newman-Shapiro (1964) also generalised by Ragozin (1971)

Therefore, we get approximation guarantees for Lipschitz starbodies

Corollary [M,M,V]: The polygauge body which approximates a convex body is convex as well.

Better than truncating the spherical harmonics series

$$f = \sum_{d=0}^{\infty} f_d$$

Spherical harmonics

A homogeneous polynomial $p \in \mathbb{R}[x_1, ..., x_n]$ of degree d is called harmonic if $\Delta p = 0$.

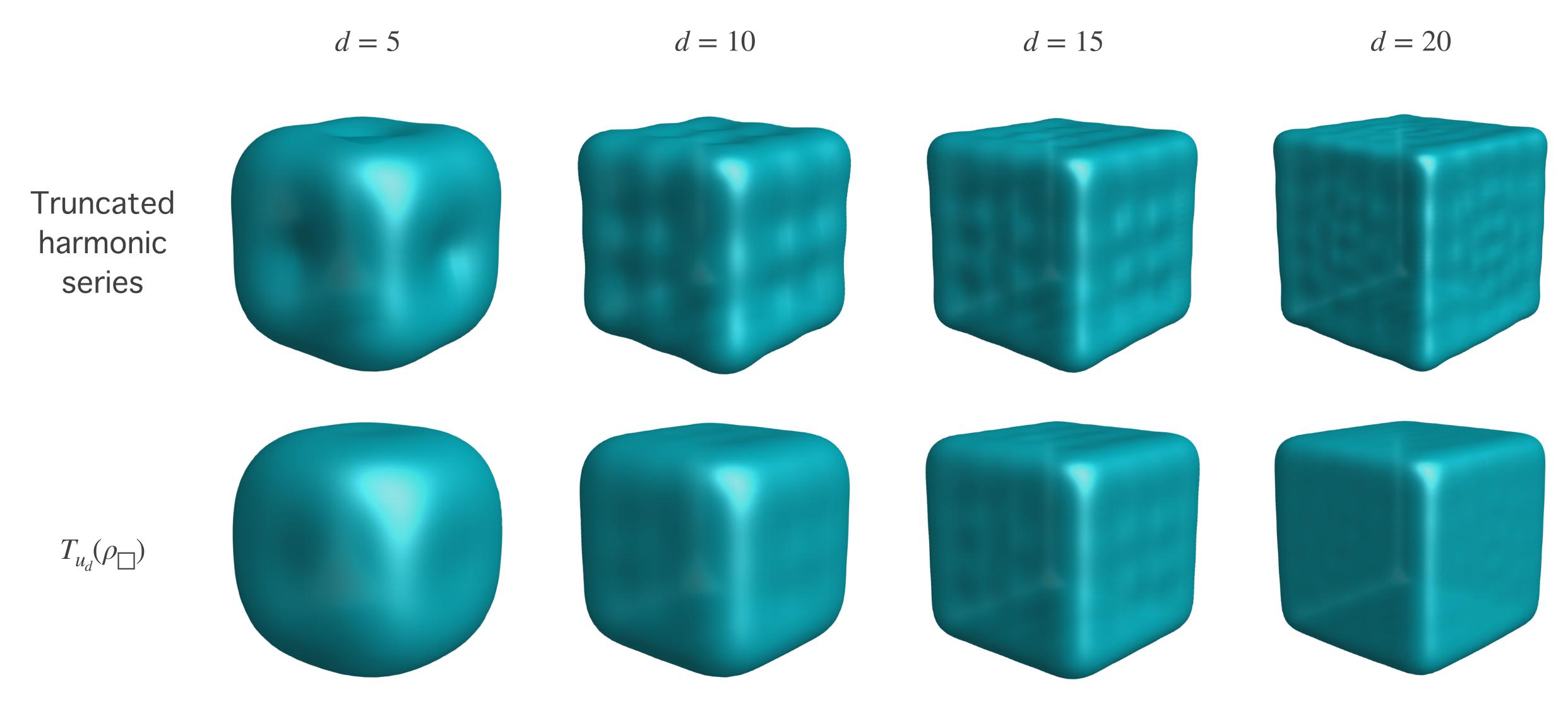
Restrict to
$$S^{n-1}$$

Restrict to S^{n-1} \mathscr{H}_d : spherical harmonics of degree d $\mathbb{R}[S^{n-1}]$

$$\mathcal{H}_d = \mathbb{R}[S^{n-1}]_{\leq d} \cap \mathbb{R}[S^{n-1}]_{\leq d-1}^{\perp}$$
$$L^2(S^{n-1}, \mu) = \overline{\bigoplus_d \mathcal{H}_d}$$

Each
$$f \in L^2(S^{n-1}, \mu)$$
 has a unique expression as $f = \sum_{d=0}^{\infty} f_d$ where $f_d \in \mathcal{H}_d$

To convince you with pictures



Can we do better?

* Theoretical

* Theoretical constructive

- * Sharp approximation guarantees
- * Computational

Can we do better if we approximate starbodies in other ways instead of with polynomials?

Kolmogorov *N*-width of a set $A \subset C(S^{n-1})$:

$$\mathcal{W}_N(A) = \inf_{\dim W \le N} \sup_{a \in A} d(a, W),$$

$$W \subset C(S^{n-1}) \text{ linear}$$

i.e. best possible worst-case approximation error

Asymptotic optimality

Theorem [M,M,V]: Lipschitz starbodies with Lipschitz constant at most κ on S^{n-1} cannot be approximated faster than

$$\frac{\kappa}{d}$$
 as $d \to \infty$,

up to multiplicative constant, by bodies coming from any subspace of continuous function of the same dimension as the space of polynomials on S^{n-1} of degree at most d.

This extends an argument of Lorentz (1960)

Therefore, polystar bodies are asymptotically optimal approximators

Proofs ingredients:

- * Gegenbauer polynomial
- * Spherical harmonics
- * Funk-Hecke formula

In practice

- * Theoretical
- * Theoretical constructive
- * Sharp approximation guarantees
- * Computational

How do I do it on my computer?

Use quadrature rules to compute $T_{u_d}(f)(x) = \int_{S^{n-1}} u_d(\langle x, y \rangle) f(y) d\mu(y)$

 ε -uniform convergence in poly(d) time

in fixed dimension *n*

Python: https://github.com/ChiaraMeroni/polystar_bodies

Back to volume slices

The intersection body of L is the starbody IL with radial function

$$\rho_{IL}(x) = \operatorname{vol}(L \cap x^{\perp})$$

Lutwak (1988)
Towards the resolution of the Busemann-Petty problem

Largest volume slice of L

Maximum of ρ_{IL}

L polyradial body

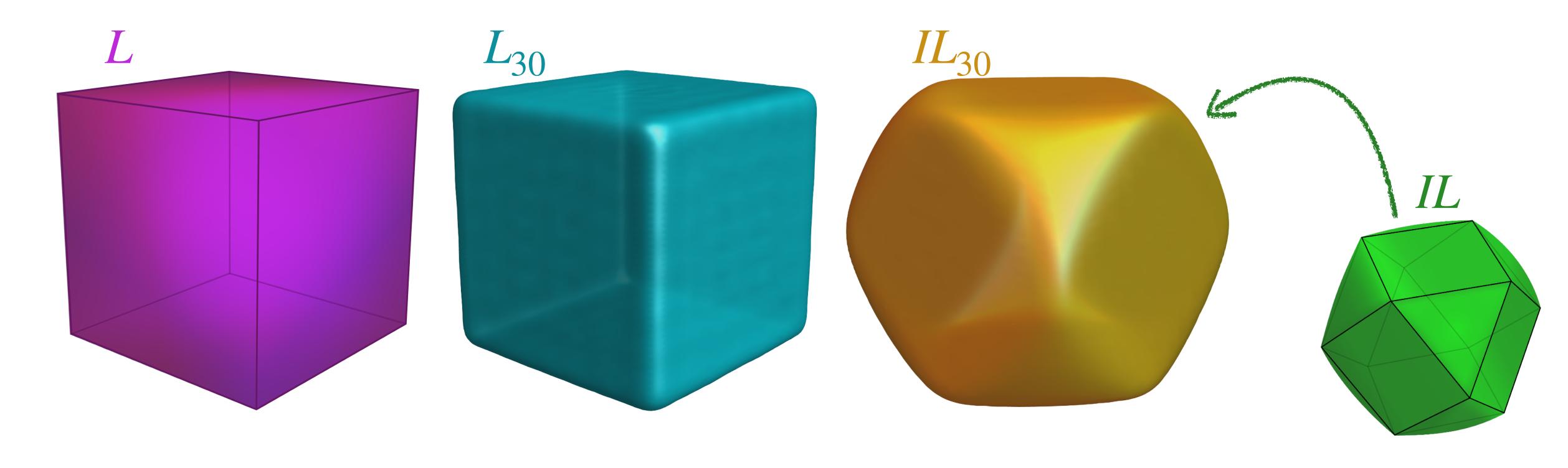
Funk

IL polyradial body

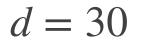
Computations

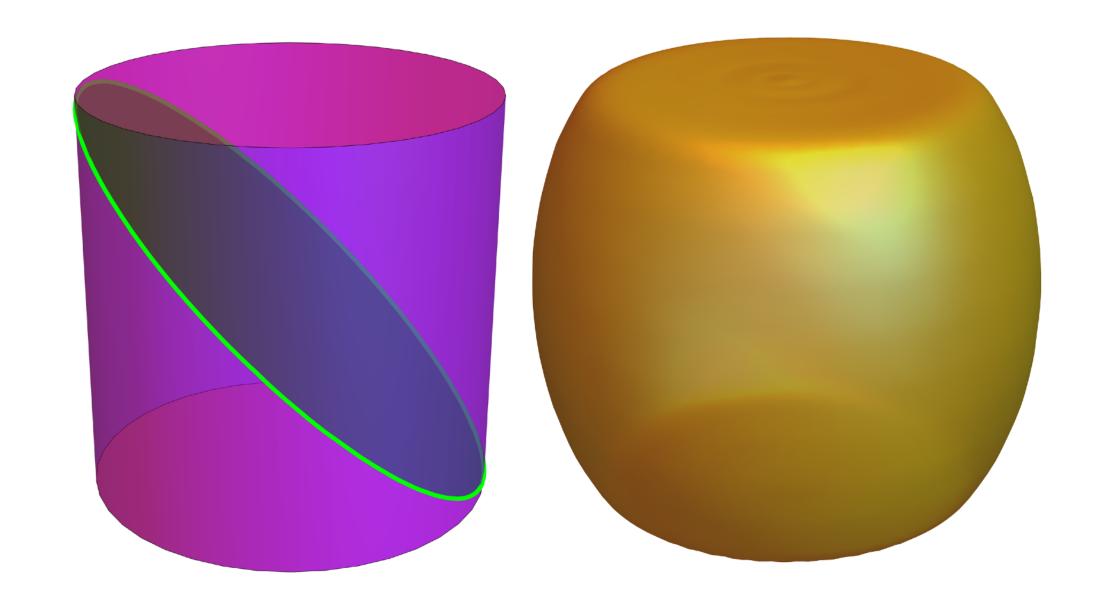
Computational pipeline:

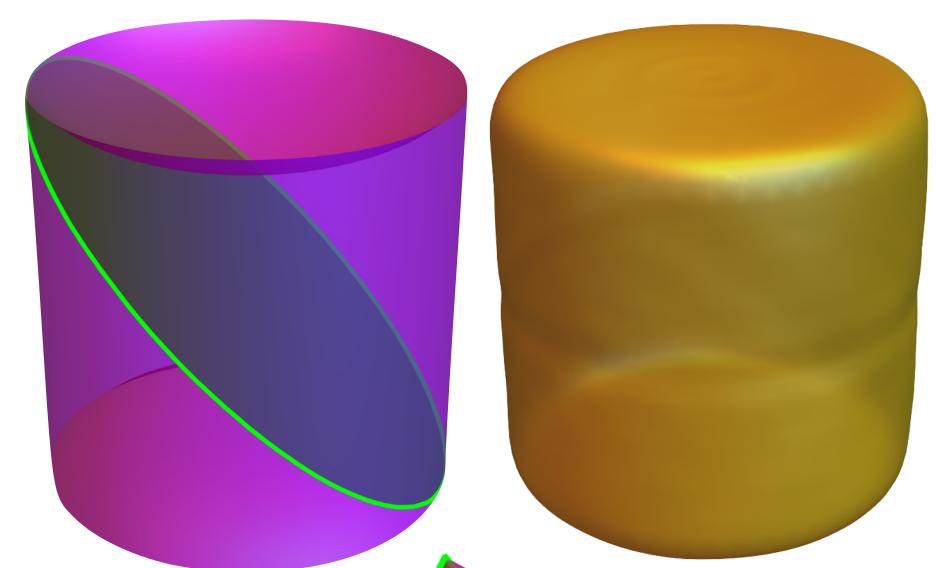
- * Approximate L with a polyradial body L_d
- * Compute the intersection body *IL*_d
- * Find the maximum of the polynomial ρ_{IL_d} on S^{n-1}



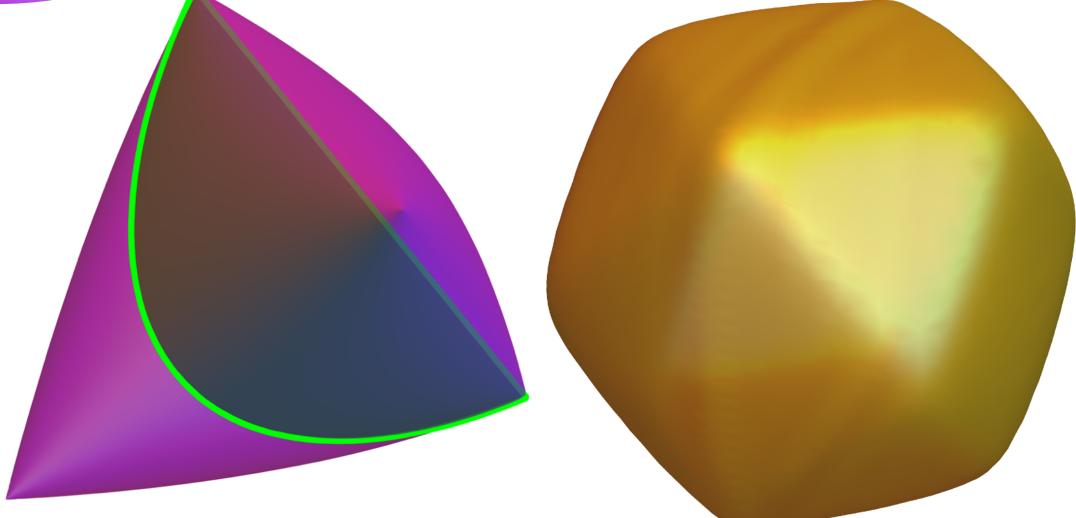
Computations



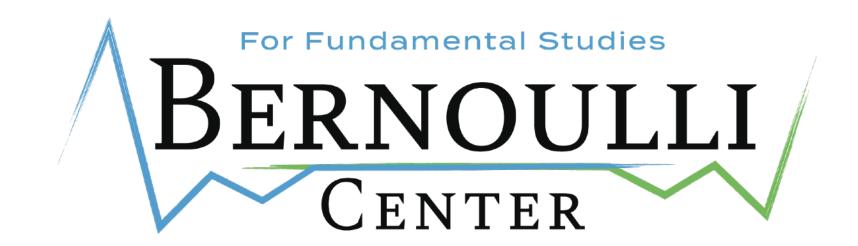




L	numerical max	numerical direction	max	a direction
cube	5.4215	(-0.7070, -0.7071, 0)	$4\sqrt{2}$	$(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$
cylinder	4.1184	(0.6414, 0.2595, -0.7219)	$\pi\sqrt{2}$	$(\frac{\cos t}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$
dented tin can	4.1713	(0.6314, 0.3021, -0.7141)	$\pi\sqrt{2}$	$\left(\frac{\cos t}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$
elliptope	3.7260	(0.7089, -0.0026, -0.7052)	$\frac{8\sqrt{2}}{3}$	$(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})$



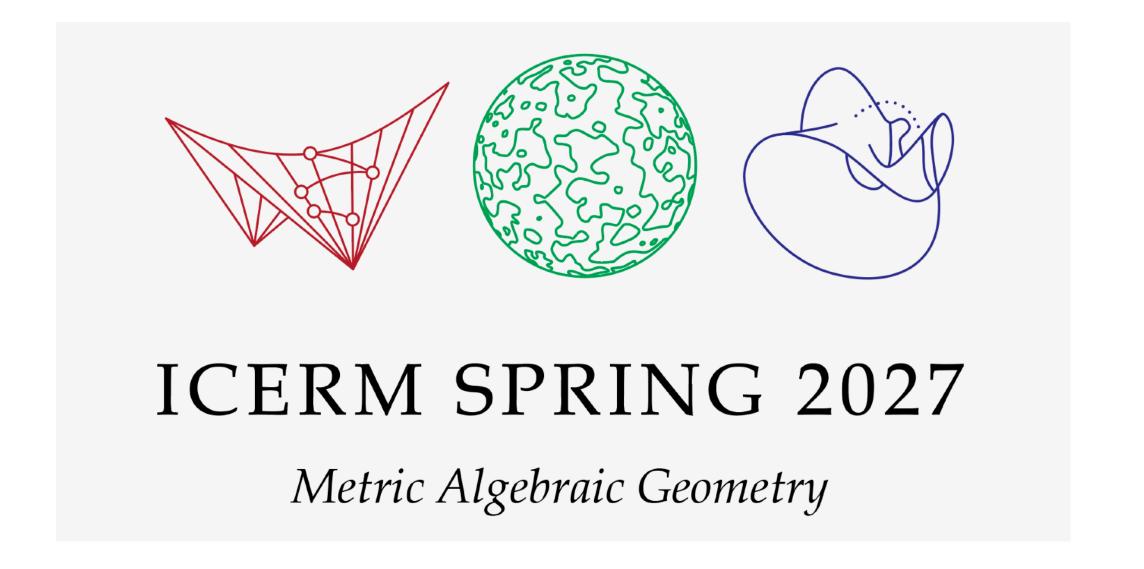
Mark your calendar!



ALGEBRAIC ASPECTS OF METRIC AND INTEGRAL GEOMETRY

March 2026

Co-organized with J. Draisma, A. Lerario, L. Monin



Co-organized with P. Breiding, S. Di Rocco, J. Kileel, K. Kohn, A. Lerario, J. Rodriguez, and A. Seigal

