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Our problem.

To study formal vector fields of dim 2:

ξ = f (x , y)
∂

∂x
+ g(x , y)

∂

∂y
, where f ,g ∈ R[[x , y ]]. (1)

via their transserial solutions{
x(t) = γ1(t)
y(t) = γ2(t)

where γ = (γ1, γ2) ∈ T2, ϕ(0) = ψ(0) = 0.
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Our problem.

Our motivation: same problem for dim 3 vector fields

ξ = f (x , y , z)
∂

∂x
+ g(x , y , z)

∂

∂y
+ h(x , y , z)

∂

∂z

where f ,g,h ∈ R[[x , y , z]].

Work in progress...
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Our problem

Formal counterpart of our work on 3-dim vector fields definable
in a polynomially bounded o-minimal structure over R:

Solutions of definable ODEs with regular separation and
dichotomy interlacement versus Hardy

Rev. Mat. Iberoam. 38 (2022).
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Context and motivation.

General problem.
To describe the local dynamical behaviour of a vector field at a
singular point.
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General problem.
To describe the local dynamical behaviour of a vector field at a
singular point.

 to study the behaviour of one trajectory
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Context and motivation.

General problem.
To describe the local dynamical behaviour of a vector field at a
singular point.

 to study the behaviour of one trajectory

↙ ↘
oscillating vs non-oscillating
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Context and motivation.

General problem.
To describe the local dynamical behaviour of a vector field at a
singular point.

↘
non-oscillating

M. Matusinski Transsserial trajectories of planar vector fields.



Introduction.
Our results

Our problem.
Overview.

Context and motivation.

General problem.
To describe the local dynamical behaviour of a vector field at a
singular point.

Non-oscillating case to study the mutual behaviour of a
pencil of trajectories

M. Matusinski Transsserial trajectories of planar vector fields.



Introduction.
Our results

Our problem.
Overview.

Context and motivation.

General problem.
To describe the local dynamical behaviour of a vector field at a
singular point.

Non-oscillating case to study the mutual behaviour of a
pencil of trajectories

↙ ↘
interlacement vs separation
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Known results.

Dimension 2.

oscillation = spiralling

vs

non-oscillation = has a tangent,
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Overview.

Known results.

Dimension 2.

oscillation = spiralling

vs

non-oscillation = has a tangent
+ o-minimality (Lion-Rolin 1998, Speissegger 1999,...)
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Known results

Dimension 3, for a pencil having iterated
tangents (Cano-Moussu-Sanz 2004):

oscillation = twisting around one analytic axis Γ0

or
interlacing = twisting around one formal axis Γ̂0

+ o-minimality (Rolin-Sanz-Shäfke 2007)....
or

non-oscillation = separation by projection,
expected to generate a Hardy field...
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Transseries and Hardy fields.

Grid-based transseries.

Tg = field obtained from R((tR)) by closing under exp,
(well-defined) log and taking grid-based series,
i.e. series with support included in a set{

nmN
1 · · ·mN

k

}
for some nm1, . . . ,mk ∈M.

Aschenbrenner–van den Dries–van der Hoeven (2017):

Tg 4 T

which is a model complete ordered valued differential field
(H-field).
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Transseries and Hardy fields.

Hardy fields.

H = field of germs of f : (a,+∞)→ R closed under derivation.

E.g.:
via o-minimal structures;
via non-oscillating solutions of ODE’s.

Aschenbrenner–van den Dries–van der Hoeven (2023-25
preprint): Maximal Hardy fields are ≡ to T, and therefore to Tg .
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Transseries and differential equations

The natural valuation: v (or quasi-order 4) based on the
archim. equiv. relation ∼.

Valuative properties:
1 Strong l’Hospital’s rule: if v(a) 6= 0 and v(b) 6= 0, then

v(a) ≥ v(b)⇔ v(a′) ≥ v(b′) ;
2 Rule for the logarithmic derivative: one has that
|v(a)| >> |v(b)| > 0 if and only if v(a′/a) < v(b′/b).

3 Small derivation: v(a) ≥ 0⇒ v(a′) > 0.
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Transseries and differential equations

The natural valuation: v (or quasi-order 4) based on the
archim. equiv. relation ∼.

Algebro-differential properties:
1 Differential equations: T is a real closed field closed

under integration and logarithmic integration, so exp-log. It
satisfies the differential intermediate value property.

2 Compositional inverse: for any a(t) ∈ T>R, there is
b(t) ∈ T>R such that a(b(t)) = t .
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Transserial pencils

A transserial curve is the equivalence class of
γ = γ(t) = (γ1(t), γ2(t)) ∈ T2 \ {(0,0)} up to reparametrization.

A transserial trajectory of a vector field ξ as in (1) is any
transserial curve (at 0) such that any representative of the
curve is tangent to ξ up to multiplication by some transseries.

Two curves γ, δ are formally inseparable if γ ∈ A⇔ δ ∈ A for
any semi-formal set A.

Integral pencil of ξ

P = a set of formally inseparable trajectories of ξ.
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Our results.

Theorem (LGMPS)
Let ξ be a formal 2-dimensional vector field and P be a
(non-empty) transserial pencil of ξ. Then ξ is not of
centre-focus type and one of the following holds:

1 P is formed of a single element γ, which is a formal curve.
2 There is a formal morphism F : R[[x , y ]]→ (x , y)R[[x , y ]] s.

t. P = F (P̃), where
a either P̃ = {(s,Csλ),C > 0} for some λ ∈ R>0;
b or P̃ = {(s,Csµ exp(−1/psp)) for some µ ∈ R,p ∈ N.

Moreover, there are but finitely many pencils of type (2).
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Idea of proof.

Step 0 If O is a regular point: one unique formal power series
solution (flow-box theorem).

 One pencil consisting of one formal curve.
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Idea of proof.

Assume O is a singular point.

Step 1 Reduction of singularities (Seidenberg 1968, and al.): by
blowing-up points finitely many times, one obtains ξ with
only simple singularities.

A vector field ξ has a simple singularity at a point A if the
eigenvalues λ1, λ2 of its linear part at A satisfy:

λ1/λ2 /∈ Q>0 and λ2 6= 0.
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Center-focus vector fields

A vector field ξ is of centre-focus type (also called
monodromic) at 0 if and only if, in its (real) reduction of
singularities there are:

no dicritical components
no non-corner singular points
all corner-singular points are saddles, either hyperbolic or
non-hyperbolic.
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Center-focus vector fields

A vector field ξ is of centre-focus type (also called
monodromic) at 0 if and only if, in its (real) reduction of
singularities there are:

no dicritical components
no non-corner singular points
all corner-singular points are saddles, either hyperbolic or
non-hyperbolic.

Proposition
The vector field ξ is not of centre-focus type if and only if it has
at least one transserial solution (and therefore at least one
integral pencil).
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Idea of proof

Assume O is a simple singular point not of center–focus type.

Step 2 Reduction to formal normal forms (FNF) (Poincaré,
Dulac 1910’s, and al.): by a formal change of coordinates,
reduction to the corresponding explicit simple vector field.

E.g. the list from Il’Yashenko-Yakovenko’s book (2007):
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Idea of proof

Step 3 Explicit resolution in terms of transseries (LGMPS): we
compute explicit solutions by integration and resolution of
implicit equations.

Example: if the point O is a node i.e. λ := λ1/λ2 ∈ (R \Q)>0
and

ξ = −x
∂

∂x
− λy

∂

∂y
,

then it has 3 transserial pencils (up to reparametrization
t ↔ log(t), written with s := 1/t near 0+):

P+ := {γC = (s,Csλ), | C ∈ R>0}
P− := {γC = (s,Csλ), | C ∈ R<0}
P0 := {γ0 = (s,0)}
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Idea of proof

Step 4 Going back to the original coordinates: blow-down +
inversion of the normal form coordinates + inversion of
transseries

Example: consider a vector field in FNF coordinates (x , y)

ξ = −x
∂

∂x
− λy

∂

∂y
,

and suppose that the inversion F (a,b) of this FNF change of
coordinates is:

x =a− a2 + 2ab ẋ =(1− 2a + 2b)ȧ + (2a)ḃ

y =b − 3a2b ẏ =(−6ab)ȧ + (1− 3a2)ḃ
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Example continued

The corresponding vector field is:

(a + 2a3 − 2(λ+ 1)ab + · · · ) ∂
∂a

+ (λb + 6a2b + · · · ) ∂
∂b

or equivalently for a 6= 0:

(a3 + 2a5 − 2(λ+ 1)a4b + · · · ) ∂
∂a

+ (λa2b + 6a4b + · · · ) ∂
∂b
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Example continued

By blow-down, e.g. by:

a =u ẋ =u̇

b =
v
u

ẏ =
1
u

v̇ − v
u2 u̇

the vector field corresponds in the original coordinates (u, v) to:

(u3 − 2(λ+ 1)u3v + 2u5 + · · · ) ∂
∂u

+ (λuv + 6u3v + · · · ) ∂
∂v
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Example continued

The initial coordinates are:

u =x + x2 + 2xy + · · ·
v =xy + x2y + 2xy2 + · · ·

The pencil P+ := {γC = (s,Csλ), | C ∈ R>0} in coordinates
(x , y) above is given by:

u =s + s2 + 2Cs1+λ + · · ·
v =Cs1+λ + Cs2+λ + C2s1+2λ + · · ·
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Example finished

Finally, if one dares to invert transseries e.g. s in terms of u:

s = u + u2 + 2Cu1+λ + · · ·

one obtains by composition a pencil, e.g. for P+:

P+ := {γC = (u,F (u,Csλ)| C ∈ R>0}.
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Thank you for your attention...

... and Happy DDG 40th BIRTHDAY!!
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