Transsserial trajectories of planar vector fields.

joint with O. Le Gal (Chambéry), D. Panazzolo (Mulhouse) and F. Sanz (Valladolid)

Séminaire "Structures Algébriques Ordonnées"

DDG 40 Birthday Conference

Banyuls, 4-8 August 2025

40 ans déjà!

Our problem.

To study **formal vector fields** of dim 2:

$$\xi = f(x, y) \frac{\partial}{\partial x} + g(x, y) \frac{\partial}{\partial y}, \text{ where } f, g \in \mathbb{R}[[x, y]].$$
 (1)

via their transserial solutions

$$\begin{cases} x(t) = \gamma_1(t) \\ y(t) = \gamma_2(t) \end{cases}$$

where
$$\gamma=(\gamma_1,\gamma_2)\in\mathbb{T}^2$$
, $\varphi(0)=\psi(0)=0$.

Our problem.

Our motivation: same problem for dim 3 vector fields

$$\xi = f(x, y, z) \frac{\partial}{\partial x} + g(x, y, z) \frac{\partial}{\partial y} + h(x, y, z) \frac{\partial}{\partial z}$$

where $f, g, h \in \mathbb{R}[[x, y, z]]$.

Work in progress...

Our problem

Formal counterpart of our work on 3-dim vector fields **definable** in a polynomially bounded o-minimal structure over \mathbb{R} :

Solutions of definable ODEs with regular separation and dichotomy interlacement versus Hardy

Rev. Mat. Iberoam. 38 (2022).

General problem.

To describe the local dynamical behaviour of a vector field at a singular point.

General problem.

To describe the local dynamical behaviour of a vector field at a singular point.

→ to study the behaviour of one trajectory

General problem.

To describe the local dynamical behaviour of a vector field at a singular point.

→ to study the behaviour of one trajectory

oscillating vs non-oscillating

General problem.

To describe the local dynamical behaviour of a vector field at a singular point.

non-oscillating

General problem.

To describe the local dynamical behaviour of a vector field at a singular point.

Non-oscillating case \leadsto to study the mutual behaviour of a pencil of trajectories

General problem.

To describe the local dynamical behaviour of a vector field at a singular point.

Non-oscillating case → to study the mutual behaviour of a pencil of trajectories

interlacement vs separation

Known results.

Dimension 2.

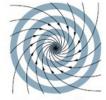
$$oscillation = spiralling$$

VS

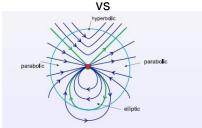
 $non-oscillation = has \ a \ tangent,$

Known results.

Dimension 2.



attracting focus



Known results.

Dimension 2.

oscillation = spiralling

VS

non-oscillation = has a tangent + *o-minimality* (Lion-Rolin 1998, Speissegger 1999,...)

Known results

```
Dimension 3, for a pencil having iterated tangents (Cano-Moussu-Sanz 2004):
```

```
oscillation = twisting around one analytic axis \Gamma_0 or interlacing = twisting around one formal axis \hat{\Gamma}_0 + <u>o-minimality</u> (Rolin-Sanz-Shäfke 2007).... or non-oscillation = separation by projection, expected to generate a Hardy field...
```

Transseries and Hardy fields.

Grid-based transseries.

 $\mathbb{T}_g = \text{field obtained from } \mathbb{R}((t^{\mathbb{R}}))$ by closing under exp, (well-defined) log and taking **grid-based** series, i.e. series with support included in a set

$$\left\{\mathfrak{n}\,\mathfrak{m}_1^{\mathbb{N}}\cdots\mathfrak{m}_k^{\mathbb{N}}\right\}$$
 for some $\mathfrak{n}\,\mathfrak{m}_1,\ldots,\mathfrak{m}_k\in\mathfrak{M}$.

Aschenbrenner-van den Dries-van der Hoeven (2017):

$$\mathbb{T}_g \preccurlyeq \mathbb{T}$$

which is a **model complete** ordered valued differential field (H-field).

Transseries and Hardy fields.

Hardy fields.

 $\mathcal{H} = \text{field of germs of } f: (a, +\infty) \to \mathbb{R} \text{ closed under derivation.}$

E.g.:

- via o-minimal structures;
- via non-oscillating solutions of ODE's.

Aschenbrenner–van den Dries–van der Hoeven (2023-25 preprint): *Maximal Hardy fields are* \equiv *to* \mathbb{T} , *and therefore to* \mathbb{T}_g .

Transseries and differential equations

The natural valuation: v (or quasi-order \leq) based on the archim. equiv. relation \sim .

Valuative properties:

- **Strong l'Hospital's rule**: if $v(a) \neq 0$ and $v(b) \neq 0$, then $v(a) \geq v(b) \Leftrightarrow v(a') \geq v(b')$;
- **Rule for the logarithmic derivative**: one has that |v(a)| >> |v(b)| > 0 if and only if v(a'/a) < v(b'/b).
- **3** Small derivation: $v(a) \ge 0 \Rightarrow v(a') > 0$.

Transseries and differential equations

The natural valuation: v (or quasi-order \leq) based on the archim. equiv. relation \sim .

Algebro-differential properties:

- Differential equations: T is a real closed field closed under integration and logarithmic integration, so exp-log. It satisfies the differential intermediate value property.
- **Compositional inverse**: for any $a(t) \in \mathbb{T}_{>\mathbb{R}}$, there is $b(t) \in \mathbb{T}_{>\mathbb{R}}$ such that a(b(t)) = t.

Transserial pencils

A transserial curve is the equivalence class of $\gamma = \gamma(t) = (\gamma_1(t), \gamma_2(t)) \in \mathbb{T}^2 \setminus \{(0,0)\}$ up to reparametrization.

A **transserial trajectory** of a vector field ξ as in (1) is any transserial curve (at 0) such that any representative of the curve is tangent to ξ up to multiplication by some transseries.

Two curves γ, δ are **formally inseparable** if $\gamma \in A \Leftrightarrow \delta \in A$ for any semi-formal set A.

Integral pencil of ξ

 $\mathcal{P} = a$ set of formally inseparable trajectories of ξ .

Our results.

Theorem (LGMPS)

Let ξ be a formal 2-dimensional vector field and \mathcal{P} be a (non-empty) transserial pencil of ξ . Then ξ is not of centre-focus type and one of the following holds:

- **1** \mathcal{P} is formed of a single element γ , which is a formal curve.
- ② There is a formal morphism $F : \mathbb{R}[[x,y]] \to (x,y)\mathbb{R}[[x,y]]$ s. t. $\mathcal{P} = F(\tilde{\mathcal{P}})$, where
 - a either $\tilde{\mathcal{P}} = \{(s, Cs^{\lambda}), C > 0\}$ for some $\lambda \in \mathbb{R}_{>0}$;
 - b or $\tilde{\mathcal{P}} = \{(s, Cs^{\mu} \exp(-1/ps^{p})) \text{ for some } \mu \in \mathbb{R}, p \in \mathbb{N}.$

Moreover, there are but finitely many pencils of type (2).

Step 0 If O is a regular point: one unique formal power series solution (flow-box theorem).

→ One pencil consisting of one formal curve.

Assume O is a singular point.

Step 1 **Reduction of singularities** (Seidenberg 1968, and al.): by blowing-up points finitely many times, one obtains ξ with only simple singularities.

A vector field ξ has a **simple singularity** at a point A if the eigenvalues λ_1, λ_2 of its linear part at A satisfy:

$$\lambda_1/\lambda_2 \notin \mathbb{Q}_{>0}$$
 and $\lambda_2 \neq 0$.

Center-focus vector fields

A vector field ξ is of **centre-focus type** (also called **monodromic**) at 0 if and only if, in its (real) reduction of singularities there are:

- no dicritical components
- no non-corner singular points
- all corner-singular points are saddles, either hyperbolic or non-hyperbolic.

Center-focus vector fields

A vector field ξ is of **centre-focus type** (also called **monodromic**) at 0 if and only if, in its (real) reduction of singularities there are:

- no dicritical components
- no non-corner singular points
- all corner-singular points are saddles, either hyperbolic or non-hyperbolic.

Proposition

The vector field ξ is not of centre-focus type if and only if it has at least one transserial solution (and therefore at least one integral pencil).

Assume O is a simple singular point not of center-focus type.

Step 2 Reduction to formal normal forms (FNF) (Poincaré, Dulac 1910's, and al.): by a formal change of coordinates, reduction to the corresponding explicit simple vector field.

E.g. the list from Il'Yashenko-Yakovenko's book (2007):

Type	Conditions	Formal normal form
Nonresonant	$[\lambda_1 : \lambda_2] \notin \mathbb{Q} \text{ or } \lambda_1 = \lambda_2 \neq 0$	Linear
Resonant	$[\lambda_1 : \lambda_2] = [r : 1],$ $r \in \mathbb{N}, \ r \geqslant 2$	$\dot{x} = rx + ay^r,$ $\dot{y} = y$ $a \in \mathbb{C}$ formal invariant.
Resonant saddle (orbital)	$\begin{aligned} [\lambda_1:\lambda_2] &= -[p:q],\\ p,q &\in \mathbb{N}, \text{ not formally}\\ \text{orbitally linearizable} \end{aligned}$	$\begin{array}{ll} \dot{x}=-px,\\ \dot{y}=qy(1\pm u^r+au^{2r}),\\ u=x^qy^p,\\ r\in\mathbb{N},\ a\in\mathbb{R} \ \text{formal orbital}\\ \text{invariants} \end{array}$
Elliptic points (orbital)	$\lambda_{1,2} = \pm i\omega$, not formally orbitally linearizable	
Saddle-node (orbital classi- fication)	$\lambda_1 \neq 0, \ \lambda_2 = 0,$ formally isolated singularity	$\begin{split} \dot{x} &= x,\\ \dot{y} &= \pm y^{r+1} + a y^{2r+1},\\ r &\in \mathbb{N}, \ a \in \mathbb{R} \ \text{formal orbital}\\ \text{invariants} \end{split}$

Step 3 Explicit resolution in terms of transseries (LGMPS): we compute explicit solutions by integration and resolution of implicit equations.

Example: if the point O is a node i.e. $\lambda := \lambda_1/\lambda_2 \in (\mathbb{R} \setminus \mathbb{Q})_{>0}$ and

$$\xi = -x \frac{\partial}{\partial x} - \lambda y \frac{\partial}{\partial y},$$

then it has 3 transserial pencils (up to reparametrization $t \leftrightarrow \log(t)$, written with s := 1/t near 0^+):

$$\begin{array}{lll} \mathcal{P}_{+} & := & \{\gamma_{\textit{C}} = (\textit{s}, \textit{Cs}^{\lambda}), | \textit{C} \in \mathbb{R}_{>0}\} \\ \mathcal{P}_{-} & := & \{\gamma_{\textit{C}} = (\textit{s}, \textit{Cs}^{\lambda}), | \textit{C} \in \mathbb{R}_{<0}\} \\ \mathcal{P}_{0} & := & \{\gamma_{0} = (\textit{s}, 0)\} \end{array}$$

Step 4 Going back to the original coordinates: blow-down + inversion of the normal form coordinates + inversion of transseries

Example: consider a vector field in FNF coordinates (x, y)

$$\xi = -x \frac{\partial}{\partial x} - \lambda y \frac{\partial}{\partial y},$$

and suppose that the inversion F(a, b) of this FNF change of coordinates is:

$$x = a - a^2 + 2ab$$
 $\dot{x} = (1 - 2a + 2b)\dot{a} + (2a)\dot{b}$
 $y = b - 3a^2b$ $\dot{y} = (-6ab)\dot{a} + (1 - 3a^2)\dot{b}$

Example continued

The corresponding vector field is:

$$(a+2a^3-2(\lambda+1)a^b+\cdots)\frac{\partial}{\partial a}+(\lambda b+6a^2b+\cdots)\frac{\partial}{\partial b}$$

or equivalently for $a \neq 0$:

$$(a^3 + 2a^5 - 2(\lambda + 1)a^4b + \cdots)\frac{\partial}{\partial a} + (\lambda a^2b + 6a^4b + \cdots)\frac{\partial}{\partial b}$$

Example continued

By blow-down, e.g. by:

$$a = u \qquad \dot{x} = \dot{u}$$

$$b = \frac{v}{u} \qquad \dot{y} = \frac{1}{u}\dot{v} - \frac{v}{u^2}\dot{u}$$

the vector field corresponds in the original coordinates (u, v) to:

$$(u^3 - 2(\lambda + 1)u^3v + 2u^5 + \cdots)\frac{\partial}{\partial u} + (\lambda uv + 6u^3v + \cdots)\frac{\partial}{\partial v}$$

Example continued

The initial coordinates are:

$$u = x + x^{2} + 2xy + \cdots$$
$$v = xy + x^{2}y + 2xy^{2} + \cdots$$

The pencil $\mathcal{P}_+ := \{ \gamma_C = (s, Cs^{\lambda}), | C \in \mathbb{R}_{>0} \}$ in coordinates (x, y) above is given by:

$$u = s + s^{2} + 2Cs^{1+\lambda} + \cdots$$

 $v = Cs^{1+\lambda} + Cs^{2+\lambda} + C^{2}s^{1+2\lambda} + \cdots$

Example finished

Finally, if one dares to invert transseries e.g. s in terms of u:

$$s = u + u^2 + 2Cu^{1+\lambda} + \cdots$$

one obtains by composition a pencil, e.g. for \mathcal{P}_+ :

$$\mathcal{P}_+ := \{ \gamma_C = (u, F(u, Cs^{\lambda}) | C \in \mathbb{R}_{>0} \}.$$

Thank you for your attention...

... and Happy DDG 40th BIRTHDAY!!

Ordered Algebraic Structures and Related Topics

Fabrizio Brogila Françoise Delon Max Dickmann Danielle Gondard-Cazette Victoria Ann Powers Editors

American Mathematical Society

