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Our problem.

To study formal vector fields of dim 2:

B B
£= f(x,y)a +9(x, y)@, where f,g € R[[x, y]]. (1)

via their transserial solutions

it

where y = (71,72) € T2, (0) = ¢(0) = 0.
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Our problem.

Our motivation: same problem for dim 3 vector fields

0 0 0
5_ f(Xa}’,Z)a+Q(X7y7z)@+h()ﬁy72)§

where f,g, h € R[[x, y, Z]].

Work in progress...
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Our problem

Formal counterpart of our work on 3-dim vector fields definable
in a polynomially bounded o-minimal structure over R:

Solutions of definable ODEs with regular separation and
dichotomy interlacement versus Hardy

Rev. Mat. Iberoam. 38 (2022).
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Context and motivation.

General problem.

To describe the local dynamical behaviour of a vector field at a
singular point.
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Context and motivation.

General problem.

To describe the local dynamical behaviour of a vector field at a
singular point.

~~ to study the behaviour of one trajectory
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Context and motivation.

General problem.

To describe the local dynamical behaviour of a vector field at a
singular point.

~~ to study the behaviour of one trajectory

e N\

oscillating  vs non-oscillating
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General problem.

To describe the local dynamical behaviour of a vector field at a
singular point.

p

non-oscillating
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Context and motivation.

General problem.

To describe the local dynamical behaviour of a vector field at a
singular point.

Non-oscillating case ~ to study the mutual behaviour of a
pencil of trajectories
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Context and motivation.

General problem.

To describe the local dynamical behaviour of a vector field at a
singular point.

Non-oscillating case ~ to study the mutual behaviour of a
pencil of trajectories

v p

interlacement vs  separation
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Known results.

Dimension 2.

oscillation = spiralling
Vs

non-oscillation = has a tangent,
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Known results.

Dimension 2.

= L" _ parabolic
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Known results.

Dimension 2.
oscillation = spiralling
\&

non-oscillation = has a tangent
+ o-minimality (Lion-Rolin 1998, Speissegger 1999,...)
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Known results

Dimension 3, for a pencil having iterated
tangents (Cano-Moussu-Sanz 2004):

oscillation = twisting around one analytic axis [g
or
interlacing = twisting around one formal axis Fo
+ o-minimality (Rolin-Sanz-Shifke 2007)....
or
non-oscillation = separation by projection,
expected to generate a Hardy field...
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Transseries and Hardy fields.

Grid-based transseries.

T4 = field obtained from R((t*)) by closing under exp,
(well-defined) log and taking grid-based series,
i.e. series with support included in a set

nmy - -ml b for some nmy,..., m, € M.
1 k ) )

Aschenbrenner—van den Dries—van der Hoeven (2017):
Tg=<T

which is a model complete ordered valued differential field
(H-field).
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Transseries and Hardy fields.

Hardy fields.
‘H = field of germs of f : (a,+00) — R closed under derivation.

E.g.:
@ via o-minimal structures;
@ via non-oscillating solutions of ODE’s.

Aschenbrenner—van den Dries—van der Hoeven (2023-25
preprint): Maximal Hardy fields are = to T, and therefore to T.
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Transseries and differential equations

The natural valuation: v (or quasi-order <) based on the
archim. equiv. relation ~.

Valuative properties:
@ Strong I’'Hospital’s rule: if v(a) # 0 and v(b) # 0, then
v(a) > v(b) & v(&) > v(b);
© Rule for the logarithmic derivative: one has that
lv(a)| >> |v(b)| > 0if and only if v(&'/a) < v(b'/b).
© Small derivation: v(a) > 0= v(&) > 0.
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Transseries and differential equations

The natural valuation: v (or quasi-order <) based on the
archim. equiv. relation ~.

Algebro-differential properties:

© Differential equations: T is a real closed field closed
under integration and logarithmic integration, so exp-log. It
satisfies the differential intermediate value property.

© Compositional inverse: for any a(t) € T, there is
b(t) € T~r such that a(b(t)) = t.
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Transserial pencils

A transserial curve is the equivalence class of
v =7(t) = (71(1),72(t)) € T2\ {(0,0)} up to reparametrization.

A transserial trajectory of a vector field ¢ as in (1) is any
transserial curve (at 0) such that any representative of the
curve is tangent to £ up to multiplication by some transseries.

Two curves ~, 6 are formally inseparable if y ¢ A< § € Afor
any semi-formal set A.

Integral pencil of £
P = a set of formally inseparable trajectories of &.
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Our results.

Theorem (LGMPS)

Let ¢ be a formal 2-dimensional vector field and P be a
(non-empty) transserial pencil of §. Then ¢ is not of
centre-focus type and one of the following holds:
@ P is formed of a single element ~, which is a formal curve.
@ There is a formal morphism F : R[[x, y]] — (X, y)R[[x, ¥]] s.
t. P = F(P), where
a either P = {(s, Cs*), C > 0} for some \ € R~;
b orP = {(s, Cst exp(—1/psP)) for some . € R, p € N.

Moreover, there are but finitely many pencils of type (2).
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|dea of proof.

Step 0 If O is a regular point: one unique formal power series
solution (flow-box theorem).

~+ One pencil consisting of one formal curve.
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|dea of proof.

Assume O is a singular point.

Step 1 Reduction of singularities (Seidenberg 1968, and al.): by
blowing-up points finitely many times, one obtains £ with
only simple singularities.

A vector field £ has a simple singularity at a point A if the
eigenvalues Ay, A of its linear part at A satisfy:

Ai/A2 ¢ Qo and A2 # 0.
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Center-focus vector fields

A vector field ¢ is of centre-focus type (also called
monodromic) at 0 if and only if, in its (real) reduction of
singularities there are:

@ no dicritical components
@ no non-corner singular points

@ all corner-singular points are saddles, either hyperbolic or
non-hyperbolic.
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Center-focus vector fields

A vector field ¢ is of centre-focus type (also called
monodromic) at 0 if and only if, in its (real) reduction of
singularities there are:

@ no dicritical components
@ no non-corner singular points

@ all corner-singular points are saddles, either hyperbolic or
non-hyperbolic.

Proposition

The vector field £ is not of centre-focus type if and only if it has
at least one transserial solution (and therefore at least one
integral pencil).
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|dea of proof

Assume O is a simple singular point not of center—focus type.

Step 2 Reduction to formal normal forms (FNF) (Poincaré,
Dulac 1910’s, and al.): by a formal change of coordinates,
reduction to the corresponding explicit simple vector field.

E.g. the list from II'Yashenko-Yakovenko’s book (2007):
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Our results

dle (orbital)

p,q € N, not formally
orbitally linearizable

Type Conditions Formal normal form
Nonresonant | [A1 : A2] ¢ Q or A\; = | Linear
X2 #0
| Resonamt——| i) =[r:1], T=rz o
node reN r> =y
W
Resonant sad- | [A; : Ado] = —[p: q], &= —pz,

¥= qy(lu +au?),

u = ziyP,

r € N, a € R formal orbital
invariants

(orbital classi-
fication)

formally isolated singu-
larity

Elliptic A2 = Ziw, not for- | 2= yEaz(l s
(orbital) mally orbi lineariz- | 4=—7 + y(u" + au?"),
able U= 2 a € R formal
orbital invariant
Saddle-node A #0, A =0, T =u,

y — iyr+1 + ayZTH,

r € N, a € R formal orbital
invariants
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|dea of proof

Step 3 Explicit resolution in terms of transseries (LGMPS): we
compute explicit solutions by integration and resolution of
implicit equations.

Example: if the point Ois anode i.e. A .= A1/X2 € (R\ Q)0
and 5 3

gz_xaix_)\y§7

then it has 3 transserial pencils (up to reparametrization
t «> log(t), written with s := 1/t near 0%):
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|dea of proof

Step 4 Going back to the original coordinates: blow-down +
inversion of the normal form coordinates + inversion of
transseries

Example: consider a vector field in FNF coordinates (x, y)

0 0
5__)(87_)\}/@7

and suppose that the inversion F(a, b) of this FNF change of
coordinates is:

X =a— & +2ab x =(1 —2a+2b)a+ (2a)b
y =b—3a’b y =(—6ab)a+ (1 — 38%)b
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Example continued

The corresponding vector field is:

0
(a+2a° —2(A+1)a° +-- )§+(Ab+6a2b+ )ab
or equivalently for a # 0:
0 0
3 5 4p 2 4
(&°+2a -2\ +1)a*b+ )63 (Aa“b+6a"b+ -- )8b

M. Matusinski Transsserial trajectories of planar vector fields.



Our framework

Our results Our results

Example continued

By blow-down, e.g. by:

v .o 1. V.
b:* =V - —Uu
u y u u?

the vector field corresponds in the original coordinates (u, v) to

(u3—2()\+1)u3v+2u5+-~);L+(>\uv+6u3v+~-) 0

ov
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Example continued

The initial coordinates are:

U=X+x2+2xy+---
v=xy+ x%y 4+ 2xy% + ...

The pencil P, := {y¢ = (s, Cs"),| C € Ry} in coordinates
(x,y) above is given by:

u=s+s>+2Cs"*+...
V:CS1+)\+CSZ+)\+CZS1+2)\+"'
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Example finished

Finally, if one dares to invert transseries e.g. s in terms of u:
s=u+u?+20ut ...

one obtains by composition a pencil, e.g. for P:
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Thank you for your attention...

and Happy DDG 40th BIRTHDAY!!
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