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Remember Taylor series

Fixasmallinterval | := (—¢,¢) C R and take the (infinitely) differentiable functions C*° (1) onit.

The Taylor expansion of a function f € C°°(I) is the power series

T(f) = f(0) + f'(0)x + fﬁz(!o)xZ +... € R[[x]].

Fact. R[[x]] has the following structure:
> ordered ring: a,x™ + a1 X" + .. .is positive ifand only if a,, > 0; sum and product are ‘obvious’;

» differential ring with %: extend (x") = nx"~" (uniquely) by strong linearity;

» composition: if Q € xIR[[x]], extend x" o Q = Q" by strong linearity. Chainrule: (Po Q) = (P' 0 Q)Q’.
Exercise. The map T is a morphism of differential rings with composition.
> Tisonlyinjective on analytic functions C* (1) or other quasianalytic classes (by definition!).
> /xisdifferentiable on I := (0, &) butis not captured by T.
> ¢ 3 isinker(T);e has different limitsat 0" and 0. : ;3 . Engineeringand
R Research Council
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Extending Taylor series

,€

N
1=

T does not capture roots, e~ x

» Toworkat' 0™, use It = (0, ¢); conventionally, actually (a, +o00) witht = x~". (Now please forget x.)
» Todo roots: include new monomials t” forr € R.
Now R((t*)) consists of series indexed by ordinals: >_, _, ait", where i < jimplies t" > t".

> For the exponentials, add more monomials, such ase ™, e =", log(t), e T1°&() Require e’ > t'.
Let us close R((t®)) under ‘infinite sums, exp, log’. Build inductively an ordered group of monomials 91, and
partially defined maps log; : My — Ja, expy : Jo — My, where X, = R((M,)), Jo = R[[M]].
Base step: My = t*. Here Xo = R((Mo)) = R((t*)) and Jo = R[[M3]].
Forn < w: My 41 = expy(J,) - log®" (£)* - log®" ™ (t)*. Define expy, log; the ‘obvious’ way.
Fora > w: Mai1 = expy(Ja), and M, = U[3<u M, if o limit.
Finally exp(f) := expy(fs1) - e~ - (T(exp) o f<1) = exp(fs1 + f=1 + f<1).
U, Xa is the Field R((t)) of omega-series (a proper class!), |, ., X» is the field T of LE-series.
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Structure on omega-series UNIVERSITY OF LEEDS

From the firstslide: T is a morphism for <, +, -, %, o, and injective on (quasi)analytic functions.

Facts/exercises. R((t)) has the following structure.
» ordered ring/field: just because it is a field of generalised power series;
» derivation £: unique strongly linear extension with (exp(f))’ = exp(f) - f';

» composition: unique strongly linear extension of t o g = g with exp(f) o g = exp(f o g) (whereg > R);
the chainrule holds (fog) = (f'og) - g'.

To be honest: uniqueness is trivial, but existence is a combinatorial headache.

Note. There is no canonical embedding function like T: constructing embeddings into R((t)) is a non-trivial task.
(Random references: van der Hoeven '09 for some Hardy fields, ADH '24 for Rp¢.g, Rolin-Servi-Speissegger 24,
Freni’24 for some o-minimal structures.)

In fact, Dulac’s problem was recently re-declared open by llyashenko, because the ‘embedding’ used in the proof
may not be injective (or at least, the proof has a gap). y . Engineering and
b«
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Properties of derivation and composition UNIVERSITY OF LEEDS

Recall: R((t)) is generated by t, so derivation and composition are uniquely determined.

Proposition. (R((t)), <, +, -, &) is an ‘H-field’ with constant field R. Almost everything has an antiderivative.

(R((t), <, +, -, &) isalmost a model of the theory of ‘H-closed fields with small derivation, which is the theory of
T, model-complete after adding the valuation to the language, NIP, distal (ADH "17), and it is also the theory of all
maximal Hardy fields (ADH '24).

Exercise. Axiomatise the theory of R((t)) as an ordered valued differential field (questionable cost/benefit).

(R((t)>E, o), even without the field structure, is a different beast. This is a highly non-abelian group; hyperseries
are a little better, with only three conjugacy classes (Bagayoko). Ask Vincent Bagayoko about ‘growth order
groups’.

But what about basic properties? For instance: surely the map g — f o gis strictly increasingwhen f’ > 0?
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Monotonicity UNIVERSITY OF LEEDS

Theorem (monotonicity; M., apparently). Forall f, x,y € R{(t)) withy > x > R,wehavef ox < foy&f' > 0.
Not completely obvious! Naive induction (some details slightly off for simplicity):
» Suppose monotonicity holds in X, (easy fora = 0).
» Lletf =) . re" € Xqqq1,wherey; € Jo C Xo. Writef oy —fox =) r(e? oy —e¥ ox).
> Verify by induction that ry (70 — €70°%) dominates all other terms, hence monotonicity (!!).
But (") is only easy for+; > 0, inwhich case |yo| > |7i| > 0, thusy; 0y — 7; o xissmallerthany, oy — 75 o x.
When ~; < 0, then |v;| may well be bigger than 7, and that puts the inequalities the wrong way around.
Pragmatic answer: use a stronger inductive hypothesis, a sort of weak mean value theorem. Assume fory € J,:
> ifyoy—~yoxeO(1),thenyoy —yox e O((v ox)-(y —x));
» if1€ O(yoy—~yox)then1 € O((y ox)-(y—x)).
Exercise. Prove by induction that the above condition holds in R {(t)).

To deduce monotonicity: if f > R, do log,,(t) o f o exp,(t) to reduce to f = w + €. Verify that
foy—fox~y— x. Othercases follows by algebraic manipulations.

. . . Engineering and
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Analyticity UNIVERSITY OF LEEDS

Considerd — f o (t + d) (more generally f o (x + 0)). Isitanalytic? What do we mean by that?
Proposition (Weak Taylor, M.). Let f, x, § € R{(t)) withx > R, € o(x),f ¢ O(1) \ o(1). If (fT o x) - € o(1), then

fﬁox.52+...+f(”)ox

. sn (n+1) L sn
- 0"+ O((fU T o) - ")

fo(x+d)=fox+(fox) -5+

Exercise. Prove the Proposition by induction, using monotonicity (and formulas relating ) to (fT)” -f).
Exercise. Prove that f' = lims_,o W (was in Berarducci-M, but only for § surreal).

Theinfinitesum ), %5" can be in R((t)) as well. When does it coincide with f o (x + §)?

Detour. x — f o x makes sense also if x lives in a different field, e.g. the surreals. For § surreal, the equality holds
when ¢ infinitesimals w.rt. all of R((t)) and a bit more (Berarducci-M.). But what is the ‘radius of convergence’?

Theorem (Strong Taylor, Bagayoko-M., ~Schmeling). Let f, x, § € R{(t)) as before. If (m o x) - § € o(1) for every
monomial mof f, then

f(”) oXx

fo(x+9d)= Z 0".  (radius of convergence is essentially optimal)
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Strong Taylor, the scary version UNIVERSITY OF LEEDS

Let A a differential pre-logarithmic H-field’ satisfying
mf € 0(t™") = (suppm’)t € O(t™") and t7' € o(m’) = (suppm’) = Q(mT)
for some fixed t.

Let B be a field of generalised power seriesand /A : A — B astrongly linear algebra morphism.

Theorem (General Convergence Theorem, Bagagyoko-M.). Letf € A, § € Bwith§ € o(A(t)), A(mT)§ € o(1)
for all m of f. Then the following expression is summable:

NG
Zin! 5",

This is then applied to A(f) = f o x either within R((t)), or for instance with f € R((t)) and x € No.

Uniqueness of the composition in R{(t)) guarantees that the sum coincides with f o (x 4 4). ﬂ . Engineering and
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Monotonicity and weak Taylor for normalisation UNIVERSITY OF LEEDS

Vague classification idea: two functions (or germs) are ‘similar’ if they become the same after a ‘controlled’
change of variables.

Example. Givenr,s € R”’, the functions " and t* are conjugate to tr and t + log(r), tsand t + log(s), and t + 1.
> log(t) ot o exp(t) = tr; likewise for t;
> Iog( ) o (tr) o exp(t) = t + log(r); likewise for ts;
> Iog(r) o (t + log(r)) o (tlog(r)) = t + 1; likewise for t + log(s).

Question (Bagayoko?). What are the conjugacy classes of R((t)) by composition? (Some are exp®”(t) forn € Z.)

More concrete problem: classify ‘Dulac series’ by change of variables that are ‘tangent to the identity".

f=cot+ Y t'Plog(t)), ¢=t+c, ¢ofogp ?

The above is the ‘hyperbolic case’ at t — +oo (see Marde$ié-Resman-Rolin-Zupanovid). y . Engineering and
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Normalisation of hyperbolic omega series UNIVERSITY OF LEEDS

Letf =ct+ ¢ € R{t) withc > 0,c £ 1, € o(t).
Theorem (Peran-Resman-Rolin-Servi). Suppose that the monomials of ¢ belong to t* - log(t)® - - - log®"(t)¥, and
¢ < 1.Thenthereisaunique ¢ = t + J, withd € o(t), (with monomials is the same group!) such that

¢ ' of o ¢ = f with the monomials (strictly) smaller than truncated away.

log(t) - - - log™"(t)

Forexample: f = 1t + \/ﬁ + @ + log(t) + t' can be conjugated to f = 1t + \/mth’ but no shorter.

Theorem (M.-Peran-Rolin-Servi). If the monomials of € belong to a ‘good’ group 91, thereisaunique ¢ =t + 6
with monomialsin9tand é € o(t) such that

¢~ of o ¢ = f with the monomials smaller than t* - inf W(N) truncated away.

(inf W(M) is the unique monomial/cut that does not admit asymptotic integration in 91.)
Weak Taylor yields approximations of f o ¢ with sufficiently precise error terms. We e.g. clarify that the terms m
that can be conjugated away are exactly the ones such that 3 admits an asymptotic integral.
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