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Remember Taylor series

Fix a small interval I := (−ε, ε) ⊆ R and take the (infinitely) differentiable functions C∞(I) on it.
The Taylor expansion of a function f ∈ C∞(I) is the power series

T(f ) := f (0) + f ′(0)x +
f ′′(0)

2!
x2 + . . . ∈ R[[x]].

Fact. R[[x]] has the following structure:
▶ ordered ring: amxm + am+1xm+1 + . . . is positive if and only if am > 0; sum and product are ‘obvious’;
▶ differential ring with d

dx : extend (xn)′ = nxn−1 (uniquely) by strong linearity;
▶ composition: if Q ∈ xR[[x]], extend xn ◦ Q = Qn by strong linearity. Chain rule: (P ◦ Q)′ = (P′ ◦ Q)Q′.

Exercise. The mapT is a morphism of differential rings with composition.

▶ T is only injective on analytic functions Cω(I) or other quasianalytic classes (by definition!).
▶

√
x is differentiable on I+ := (0, ε) but is not captured byT.

▶ e−
1

x2 is in ker(T); e− 1
x has different limits at 0+ and 0−.
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Extending Taylor series

T does not capture roots, e−
1

x2 , e− 1
x .

▶ To work at ‘0+’, use I+ = (0, ε); conventionally, actually (a,+∞)with t = x−1. (Now please forget x.)
▶ To do roots: include new monomials tr for r ∈ R.

NowR((tR)) consists of series indexed by ordinals:
∑

i<α aitri , where i < j implies tri > trj .

▶ For the exponentials, add more monomials, such as e−t, e−t2
, log(t), et3+log(t). Require et > tr.

Let us closeR((tR)) under ‘infinite sums, exp, log’. Build inductively an ordered group of monomialsMα and
partially defined maps logJ : Mα → Jα, expJ : Jα → Mα, where Xα := R((Mα)), Jα := R[[M>1

α ]].

1 Base step: M0 := tR. Here X0 = R((M0)) = R((tR)) and J0 = R[[M>1
0 ]].

2 For n < ω: Mn+1 := expJ(Jn) · log◦n (t)R · log◦(n+1) (t)R. Define expJ, logJ the ‘obvious’ way.
3 Forα ≥ ω: Mα+1 := expJ(Jα), andMα :=

⋃
β<α Mα ifα limit.

Finally exp(f ) := expJ(f>1) · ef=1 · (T(exp) ◦ f<1) = exp(f>1 + f=1 + f<1).⋃
α Xα is the FieldR⟨⟨t⟩⟩ of omega-series (a proper class!),

⋃
n<ω Xn is the fieldT of LE-series.

(References: too many to fit into the slide.)
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Structure on omega-series

From the first slide: T is a morphism for<,+, ·, d
dx , ◦, and injective on (quasi)analytic functions.

Facts/exercises. R⟨⟨t⟩⟩ has the following structure.
▶ ordered ring/field: just because it is a field of generalised power series;
▶ derivation d

dt : unique strongly linear extension with (exp(f ))′ = exp(f ) · f ′;
▶ composition: unique strongly linear extension of t ◦ g = g with exp(f ) ◦ g = exp(f ◦ g) (where g > R);

the chain rule holds (f ◦ g)′ = (f ′ ◦ g) · g′.

To be honest: uniqueness is trivial, but existence is a combinatorial headache.

Note. There is no canonical embedding function likeT: constructing embeddings intoR⟨⟨t⟩⟩ is a non-trivial task.
(Random references: van der Hoeven ’09 for some Hardy fields, ADH ’24 forRPfaff , Rolin-Servi-Speissegger ’24,
Freni ’24 for some o-minimal structures.)

In fact, Dulac’s problem was recently re-declared open by Ilyashenko, because the ‘embedding’ used in the proof
may not be injective (or at least, the proof has a gap).
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Properties of derivation and composition

Recall: R⟨⟨t⟩⟩ is generated by t, so derivation and composition are uniquely determined.

Proposition. (R⟨⟨t⟩⟩, <,+, ·, d
dt ) is an ‘H-field’ with constant fieldR. Almost everything has an antiderivative.

(R⟨⟨t⟩⟩, <,+, ·, d
dt ) is almost a model of the theory of ‘H-closed fields with small derivation’, which is the theory of

T, model-complete after adding the valuation to the language, NIP, distal (ADH ’17), and it is also the theory of all
maximal Hardy fields (ADH ’24).

Exercise. Axiomatise the theory ofR⟨⟨t⟩⟩ as an ordered valued differential field (questionable cost/benefit).

(R⟨⟨t⟩⟩>R, ◦), even without the field structure, is a different beast. This is a highly non-abelian group; hyperseries
are a little better, with only three conjugacy classes (Bagayoko). Ask Vincent Bagayoko about ‘growth order
groups’.

But what about basic properties? For instance: surely the map g 7→ f ◦ g is strictly increasing when f ′ > 0?
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Monotonicity
Theorem (monotonicity; M., apparently). For all f , x, y ∈ R⟨⟨t⟩⟩with y > x > R, we have f ◦ x < f ◦ y⇔ f ′ > 0.
Not completely obvious! Naive induction (some details slightly off for simplicity):
▶ Suppose monotonicity holds in Xα (easy forα = 0).
▶ Let f =

∑
i rieγi ∈ Xα+1, where γi ∈ Jα ⊆ Xα. Write f ◦ y − f ◦ x =

∑
i ri(eγi ◦ y − eγi ◦ x).

▶ Verify by induction that r0(eγ0◦y − eγ0◦x) dominates all other terms, hence monotonicity (!!).

But (!!) is only easy for γi > 0, in which case |γ0| > |γi| > 0 , thus γi ◦ y − γi ◦ x is smaller than γ0 ◦ y − γ0 ◦ x.
When γi < 0, then |γi|may well be bigger than γ0, and that puts the inequalities the wrong way around.
Pragmatic answer: use a stronger inductive hypothesis, a sort of weak mean value theorem. Assume for γ ∈ Jα:
▶ if γ ◦ y − γ ◦ x ∈ O(1), then γ ◦ y − γ ◦ x ∈ O((γ′ ◦ x) · (y − x));
▶ if 1 ∈ O(γ ◦ y − γ ◦ x), then 1 ∈ O((γ′ ◦ x) · (y − x)).

Exercise. Prove by induction that the above condition holds inR⟨⟨t⟩⟩.
To deduce monotonicity: if f > R, do logn(t) ◦ f ◦ expk(t) to reduce to f = ω + ε. Verify that
f ◦ y − f ◦ x ∼ y − x. Other cases follows by algebraic manipulations.

Question. Can this be adapted to hyperseries?
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Analyticity
Consider δ 7→ f ◦ (t + δ) (more generally f ◦ (x + δ)). Is it analytic? What do we mean by that?
Proposition (Weak Taylor, M.). Let f , x, δ ∈ R⟨⟨t⟩⟩with x > R, δ ∈ o(x), f /∈ O(1)\ o(1). If (f † ◦ x) · δ ∈ o(1), then

f ◦ (x + δ) = f ◦ x + (f ′ ◦ x) · δ + f ′′ ◦ x
2!

· δ2 + . . .+
f (n) ◦ x

n!
· δn + O((f (n+1) ◦ x) · δn+1)

Exercise. Prove the Proposition by induction, using monotonicity (and formulas relating f (n) to (f †)n · f ).
Exercise. Prove that f ′ = limδ→0

f◦(t+δ)−f◦t
δ (was in Berarducci-M, but only for δ surreal).

The infinite sum
∑

n
f (n)◦x

n! δn can be inR⟨⟨t⟩⟩ as well. When does it coincide with f ◦ (x + δ)?
Detour. x 7→ f ◦ x makes sense also if x lives in a different field, e.g. the surreals. For δ surreal, the equality holds
when δ infinitesimals w.r.t. all ofR⟨⟨t⟩⟩ and a bit more (Berarducci-M.). But what is the ‘radius of convergence’?
Theorem (Strong Taylor, Bagayoko-M., ~Schmeling). Let f , x, δ ∈ R⟨⟨t⟩⟩ as before. If (m† ◦ x) · δ ∈ o(1) for every
monomialm of f , then

f ◦ (x + δ) =
∑

n

f (n) ◦ x
n!

δn. (radius of convergence is essentially optimal)
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Strong Taylor, the scary version

LetA a ‘differential pre-logarithmic H-field’ satisfying

m† ∈ O(t−1) ⇒ (suppm′)† ∈ O(t−1) and t−1 ∈ o(m†) ⇒ (suppm′)† = Ω(m†)

for some fixed t.

LetB be a field of generalised power series and△ : A → B a strongly linear algebra morphism.

Theorem (General Convergence Theorem, Bagagyoko-M.). Let f ∈ A, δ ∈ Bwith δ ∈ o(△(t)),△(m†)δ ∈ o(1)
for allm of f . Then the following expression is summable:

∑
n

△(f (n))

n!
δn.

This is then applied to△(f ) = f ◦ x either withinR⟨⟨t⟩⟩, or for instance with f ∈ R⟨⟨t⟩⟩ and x ∈ No.

Uniqueness of the composition inR⟨⟨t⟩⟩ guarantees that the sum coincides with f ◦ (x + δ).
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Monotonicity and weak Taylor for normalisation

Vague classification idea: two functions (or germs) are ‘similar’ if they become the same after a ‘controlled’
change of variables.

Example. Given r, s ∈ R>1, the functions tr and ts are conjugate to tr and t + log(r), ts and t + log(s), and t + 1.
▶ log(t) ◦ tr ◦ exp(t) = tr; likewise for ts;
▶ log(t) ◦ (tr) ◦ exp(t) = t + log(r); likewise for ts;
▶ t

log(r) ◦ (t + log(r)) ◦ (t log(r)) = t + 1; likewise for t + log(s).

Question (Bagayoko?). What are the conjugacy classes ofR⟨⟨t⟩⟩ by composition? (Some are exp◦n(t) for n ∈ Z.)

More concrete problem: classify ‘Dulac series’ by change of variables that are ‘tangent to the identity’.

f = c0t +
∑

i

tνi Pi(log(t)), ϕ = t + ε, ϕ ◦ f ◦ ϕ−1?

The above is the ‘hyperbolic case’ at t → +∞ (see Mardešić-Resman-Rolin-Županović).
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Normalisation of hyperbolic omega series
Let f = ct + ε ∈ R⟨⟨t⟩⟩with c > 0, c ̸= 1, ε ∈ o(t).
Theorem (Peran-Resman-Rolin-Servi). Suppose that the monomials of ε belong to tR · log(t)R · · · log◦n(t)R, and
c < 1. Then there is a uniqueϕ = t + δ, with δ ∈ o(t), (with monomials is the same group!) such that

ϕ−1 ◦ f ◦ ϕ = f with the monomials (strictly) smaller than
t

log(t) · · · log◦n(t)
truncated away.

For example: f = 1
2 t + t√

log(t)
+ t

log2(t) + log(t) + t−1 can be conjugated to f = 1
2 t + t√

log(t)
, but no shorter.

Theorem (M.-Peran-Rolin-Servi). If the monomials of ε belong to a ‘good’ groupN, there is a uniqueϕ = t + δ
with monomials inN and δ ∈ o(t) such that

ϕ−1 ◦ f ◦ ϕ = f with the monomials smaller than t2 · inf Ψ(N) truncated away.

(inf Ψ(N) is the unique monomial/cut that does not admit asymptotic integration inN.)
Weak Taylor yields approximations of f ◦ ϕwith sufficiently precise error terms. We e.g. clarify that the termsm
that can be conjugated away are exactly the ones such that m

t2 admits an asymptotic integral.

Thanks!


