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Introduction
Perfectoid fields & Tilting

Theorem (Fontaine–Wintenberger ’79)

Gal(Qp(p
1/p∞

)) ∼= Gal(Fp((t))(t
1/p∞

)).

Generalization [Scholze ’12]: framework of perfectoid fields and tilting

perfectoid fields

of characteristic 0
perfectoid fields

of characteristic p

tilt

untilt

K K[

̂Qp(p1/p∞) ̂Fp((t))(t1/p∞)
∈ ∈

Perfectoid transfer: K and K[ are very similar.

 Can also be explained with model theory, [Rideau-Kikuchi–Scanlon–Simon ’25],

[Jahnke–Kartas ’25].
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Valued Fields
Notation

A valued field (K, v) is a field K together with a valuation map

v : K× � Γ .

 related algebraic objects:

• vK := Γ , the value group,
• Ov := {x ∈ K× : v(x) > 0}, the valuation ring with maximal idealmv, and

• Kv := Ov/mv, the residue field, with the residue map resv : Ov � Kv.

ordered abelian group,

written additively

The Characteristic

of a valued field:

(char(K), char(Kv)) =

(0, 0), equicharacteristic zero

(0,p),mixed characteristic

(p,p), equicharacteristic p / positive characteristic
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Perfectoid Fields

A perfectoid field is a valued field (K, v) of residue characteristic char(Kv) = p > 0 such that

(1) complete and the value group has rank 1,

(2) vK is p-divisible, and

(3) Ov/p is semiperfect,
i.e., the Frobenius Ov/p → Ov/p, x 7→ xp is surjective.

We want to remove (1) and still be able to define the tilt.

tilting is possible

the tilt is nice
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A New Class of Valued Fields

Consider the class Cp of henselian semitame fields of mixed characteristic (0,p), i.e., valued fields

(K, v) of mixed characteristic (0,p) where

(1)∗ (K, v) is henselian, New!

(2) vK is p-divisible, and

(3) Ov/p is semiperfect.

Let C :=
⋃

p prime Cp be the class of henselian semitame fields of mixed characteristic.

Fact:

• Perfectoid fields of mixed characteristic are contained in C

• Cp is an elementary class of valued fields,

• C is closed under elementary equivalence.

Aim for today: Define amodel-theoretic tilt for valued fields in C.
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Main Tool: The Standard Decomposition
Understanding valued fields of higher rank

Let (K, v) be a valued field of mixed characteristic. (Think of the arrows as places/residue map)

We can decompose into:

K KvK0 Kp
v0 vp v

equi 0 mixed

rank 1
equi p

Fact: If (K, v) isℵ1-saturated, then (K0, vp) is complete. 99K We can tilt!

Model-Theoretic Tilting margarete.ketelsen@uni-muenster.de



The Model-Theoretic Tilt
Definition

Let (K, v) ∈ C and take (L,w) |= Th(K, v) to beℵ1-saturated. We construct the tilt (L[,w[) of (L,w)
as follows:

L L0 Lp Lw

L[ := (L0)
[((∆)) (L0)

[ Lp Lw

w0

∆ := w0L

wp

perfectoid

w

Hahn series

v∆ wp
[

w

w[

ti
lt

Theorem (K.): Th(L[,w[) does not depend on the choice of the saturated model (L,w).

Definition: The tilt of Th(K, v) is Th[(K, v) := Th(L[,w[).
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The Model-Theoretic Tilt
Well-definedness

Theorem (K.)

Th(L[,w[) does not depend on the choice of the saturated model (L,w).

Proof ingredients:

(1) Fact [Gitin]: If (L,w) ≡ (L ′,w ′) are bothℵ0-saturated, then

• (L,w0) ≡ (L ′,w ′
0)

• (L0,wp) ≡ (L ′
0,w ′

p)

• (Lp,w) ≡ (L ′
p,w ′)

(2) Fact [Jahnke–Kartas ’25]: If (K, v) ≡ (K ′, v ′) are both perfectoid, then (K[, v[) ≡ (K ′[, v ′[).

(3) AKE
≡
for equicharacteristic tame fields [Kuhlmann ’16] for the Hahn series.

(4) Decomposition AKE [K.]: We can glue everything back together. (follows from [Kuhlmann ’16])
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The Model-Theoretic Tilt of a Perfectoid Field

Theorem (K.)

Let (K, v) be a perfectoid field. Then Th[(K, v) = Th(K[, v[).

Proof sketch: Let (L,w) := (K, v)U. Need to show: (L[,w[) ≡ (K[, v[).

L L0 Lp Lw

L[ := (L0)
[((∆)) (L0)

[ Lp Lw

w0

∆ := w0L

wp

perfectoid

w

Hahn series

v∆ wp
[

w

ti
lt

K[ K[v[
v[

� [Jahnke–Kartas ’25]
tame with divisible value group

`

ta
m
e

≡
Q

tame AKE≡

=⇒
[Kuhlmann ’16]

(K[, v[) � (Lp,w) ≡ (L[,w[)
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Fontaine–Wintenberger theorem

Theorem (Scholze, Fontaine–Wintenberger for perfectoid fields)

Let (K, v) be a perfectoid field. Then Gal(K) ∼= Gal(K[).

Theorem (K., Fontaine–Wintenberger for the model-theoretic tilt)

Let (L,w) ∈ C beℵ1-saturated. Then Gal(L) ∼= Gal(L[).

Proof sketch:

L L0 Lp Lw

L[ := (L0)
[((∆)) (L0)

[ Lp Lw

w0

∆ := w0L

wp

perfectoid

w

Hahn series

v∆ wp
[

w

ti
lt

perfectoid tilt

Gal(L0)

Gal(L[
0)

∼ =

Gal(L )

Gal(L[)

∼ =

ramification

theory

From ramification theory:

Gal(L) ∼= Hom(∆div/∆, ((L0)
alg)×)o Gal(L0)

Gal(L[) ∼= Hom(∆div/∆, ((L[0)alg)×)o Gal(L[0)
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Ci-transfer

Definition

A field K is Ci if every homogeneous polynomial over K of degree d in n > di many variables has a

non-trivial zero in K.

Fact [Jahnke–Kartas ’25]: Let (K, v) be a perfectoid field. If K is Ci, then so is K[.

Theorem (K.)

Let (L,w) ∈ C beℵ1-saturated. If L is Ci, then so is L[.

Proof sketch:
L L0 Lp Lw

L[ := (L0)
[((∆)) (L0)

[ Lp Lw

w0

∆ := w0L

wp

perfectoid

w

Hahn series

v∆ wp
[

w

ti
lt

perfectoid tilt

Ci−n

Ci−n

Ci

Ci

(∗)

Greenberg

(∗): K((t)) is Ci =⇒ K is Ci−1

(Greenberg): K is Ci =⇒ K((t)) is Ci+1

where n is the non-divisible rank of ∆, i.e., the number of non-divisible rank-1-quotients of ∆.

Fact (∗): If K((t)) is Ci, then K is Ci−1. Fact (Greenberg): If K is Ci, then K((t)) is Ci+1.
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Summary

I We defined a class C of henselian semitame fields of mixed characteristic. This class contains all

perfectoid fields of mixed characteristic, but also valued fields with arbitrary rank.

I We defined amodel-theoretic tilt for valued fields in C. It is defined up to elementary
equivalence. Main tool: the standard decomposition.

I We proved that the model-theoretic tilt of a perfectoid field is the same as its usual tilt (up to

elementary equivalence).

I We showed a version of Fontaine-Wintenberger for the model-theoretic tilt.

I We proved transfer of the Ci-property.

Thank you!
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