

DDG 40 : Structures algébriques et ordonnées, Banyuls-sur-Mer

Margarete Ketelsen

4 August 2025

living.knowledge

Perfectoid fields & Tilting

Theorem (Fontaine-Wintenberger '79)

$$\mathsf{Gal}(\mathbb{Q}_p(p^{1/p^\infty})) \cong \mathsf{Gal}(\mathbb{F}_p(\!(t)\!)(t^{1/p^\infty})).$$

GENERALIZATION [SCHOLZE '12]: framework of perfectoid fields and tilting

Perfectoid transfer: K and K^{\flat} are very similar.

∼→ Can also be explained with model theory, [RIDEAU-KIKUCHI-SCANLON-SIMON '25], [JAHNKE-KARTAS '25].

Valued Fields

Notation

A **valued field** (K, v) is a field K together with a valuation map

written additively

→ related algebraic objects:

- $\nu K := \Gamma$, the value group,
- $\mathcal{O}_{\nu} := \{x \in K^{\times} : \nu(x) \geqslant 0\}$, the **valuation ring** with maximal ideal \mathfrak{m}_{ν} , and
- $Kv := \mathcal{O}_v/\mathfrak{m}_v$, the **residue field**, with the **residue map** $res_v : \mathcal{O}_v \to Kv$.

Perfectoid Fields

A **perfectoid field** is a valued field (K, v) of residue characteristic char(Kv) = p > 0 such that

- (1) complete and the value group has rank 1,
- (2) vK is p-divisible, and the tilt is nice
- (3) \mathcal{O}_{ν}/p is **semiperfect**, \int the titles like i.e., the Frobenius $\mathcal{O}_{\nu}/p \to \mathcal{O}_{\nu}/p$, $\chi \mapsto \chi^p$ is surjective.

We want to remove (1) and still be able to define the tilt.

A New Class of Valued Fields

Consider the class \mathcal{C}_p of **henselian semitame fields of mixed characteristic** (0, p), i.e., valued fields (K, v) of mixed characteristic (0, p) where

- (1)* (K, v) is henselian, New!
- (2) vK is p-divisible, and
- (3) O_{ν}/p is semiperfect.

Let $\mathcal{C} := \bigcup_{p \text{ prime}} \mathcal{C}_p$ be the class of henselian semitame fields of mixed characteristic.

FACT:

- ullet Perfectoid fields of mixed characteristic are contained in ${\mathcal C}$
- ullet \mathcal{C}_p is an elementary class of valued fields,
- C is closed under elementary equivalence.

AIM FOR TODAY: Define a model-theoretic tilt for valued fields in C.

Main Tool: The Standard Decomposition

Understanding valued fields of higher rank

Let (K, v) be a valued field of mixed characteristic. (Think of the arrows as *places*/residue map) We can decompose into:

$$\begin{array}{c} \mathsf{K} \xrightarrow{\nu_0} \mathsf{K}_0 \xrightarrow{\overline{\nu_p}} \mathsf{K}_p \xrightarrow{\overline{\overline{\nu}}} \mathsf{K}_{\nu} \\ & & & & & \\ \mathsf{equi} \ \mathsf{0} & & \mathsf{mixed} & & \mathsf{equi} \ \mathsf{p} \\ & & & & & \\ \mathsf{rank} \ \mathsf{1} & & & & \end{array}$$

FACT: If (K, v) is K_1 -saturated, then $(K_0, \overline{v_p})$ is complete. \longrightarrow We can tilt!

The Model-Theoretic Tilt

Definition

Let $(K, v) \in \mathcal{C}$ and take $(L, w) \models \mathsf{Th}(K, v)$ to be \aleph_1 -saturated. We construct the **tilt** (L^{\flat}, w^{\flat}) of (L, w) as follows:

THEOREM (K.): Th(L^{\flat} , w^{\flat}) does not depend on the choice of the saturated model (L, w).

DEFINITION: The **tilt** of $Th(K, \nu)$ is $Th^{\flat}(K, \nu) \coloneqq Th(L^{\flat}, w^{\flat})$.

The Model-Theoretic Tilt

Well-definedness

Theorem (K.)

 $\mathsf{Th}(\mathsf{L}^{\flat}, w^{\flat})$ does not depend on the choice of the saturated model (L, w) .

PROOF INGREDIENTS:

- (1) FACT [GITIN]: If $(L, w) \equiv (L', w')$ are both x_0 -saturated, then
 - $\bullet \ (L,w_0) \equiv (L',w_0')$
 - $(L_0, \overline{w_p}) \equiv (L'_0, \overline{\overline{w'_p}})$
 - $\bullet \ (\mathsf{L}_{\mathsf{p}},\overline{\overline{w}}) \equiv (\mathsf{L}'_{\mathsf{p}},\overline{\overline{w'}})$
- (2) FACT [JAHNKE–KARTAS '25]: If $(K, \nu) \equiv (K', \nu')$ are both **perfectoid**, then $(K^{\flat}, \nu^{\flat}) \equiv (K'^{\flat}, \nu'^{\flat})$.
- (3) AKE[≡] FOR EQUICHARACTERISTIC TAME FIELDS [KUHLMANN '16] for the Hahn series.
- (4) DECOMPOSITION AKE [K.]: We can glue everything back together. (follows from [KUHLMANN '16])

The Model-Theoretic Tilt of a Perfectoid Field

Theorem (K.)

Let (K, v) be a perfectoid field. Then $\mathsf{Th}^{\flat}(K, v) = \mathsf{Th}(K^{\flat}, v^{\flat})$.

PROOF SKETCH: Let $(L, w) := (K, v)^{\mathcal{U}}$. Need to show: $(L^{\flat}, w^{\flat}) \equiv (K^{\flat}, v^{\flat})$.

$$L \xrightarrow[\Delta := w_0 L]{w_0} L_0 \xrightarrow[\text{perfectoid}]{\overline{w_p}} L_p \xrightarrow[\overline{w}]{\overline{w}} Lw$$

$$L^{\flat} \coloneqq (L_0)^{\flat}((\Delta)) \xrightarrow[\text{Hahn series}]{v_{\Delta} \atop \text{Hahn series}} (L_0)^{\flat} \xrightarrow[\overline{w_p}]{\overline{w_p}} L_p \xrightarrow[\overline{w}]{\overline{w}} Lw$$

$$tame \text{ with divisible value group}$$

$$K^{\flat} \xrightarrow{v^{\flat}} K^{\flat}v^{\flat}$$

 $\varinjlim_{[\mathsf{KUHLMANN '16}]} (\mathsf{K}^{\flat}, \nu^{\flat}) \succeq (\mathsf{L}_{\mathfrak{p}}, \overline{\overline{\mathfrak{w}}}) \equiv (\mathsf{L}^{\flat}, \mathcal{w}^{\flat})$

Fontaine-Wintenberger theorem

Theorem (Scholze, Fontaine-Wintenberger for perfectoid fields)

Let (K, v) be a perfectoid field. Then $Gal(K) \cong Gal(K^{\flat})$.

Theorem (K., Fontaine-Wintenberger for the model-theoretic tilt)

Let $(L, w) \in \mathcal{C}$ be \aleph_1 -saturated. Then $Gal(L) \cong Gal(L^{\flat})$.

PROOF SKETCH:

C_i-transfer

Definition

A field K is C_i if every homogeneous polynomial over K of degree d in $n > d^i$ many variables has a non-trivial zero in K.

FACT [JAHNKE-KARTAS '25]: Let (K, v) be a perfectoid field. If K is C_i , then so is K^{\flat} .

Theorem (K.)

Let $(L, w) \in \mathcal{C}$ be X_1 -saturated. If L is C_i , then so is L^{\flat} .

PROOF SKETCH:

(*):
$$K((t))$$
 is $C_i \Longrightarrow K$ is C_{i-1}

(Greenberg): K is $C_i \Longrightarrow K((t))$ is C_{i+1}

Summary

- ▶ We defined a **class** C of henselian semitame fields of mixed characteristic. This class contains all perfectoid fields of mixed characteristic, but also valued fields with arbitrary rank.
- ► We defined a model-theoretic tilt for valued fields in C. It is defined up to elementary equivalence. MAIN TOOL: the standard decomposition.
- ▶ We proved that the model-theoretic tilt **of a perfectoid field** is the same as its usual tilt (up to elementary equivalence).
- ▶ We showed a version of **Fontaine-Wintenberger** for the model-theoretic tilt.
- ▶ We proved transfer of the C_i -property.

Thank you!

References

- Franziska Jahnke and Konstantinos Kartas, **Beyond the Fontaine-Wintenberger theorem**, to appear in J. Amer. Math. Soc. (Published online 2025), doi:10.1090/jams/1056.
- Margarete Ketelsen, **Decomposition AKE for tame fields**, upcoming work.
- Margarete Ketelsen, Model-theoretic tilting Arbitrary rank welcome, upcoming work.
- Silvain Rideau-Kikuchi, Thomas Scanlon and Pierre Simon, **The tilting equivalence as a bi-interpretation**, arXiv preprint (2025), arXiv:2505.01321.
- Franz-Viktor Kuhlmann, **The algebra and model theory of tame valued fields**, J. Reine Angew. Math. **2016** (2016), no. 719, 1–43.
- Franz-Viktor Kuhlmann and Anna Rzepka, The valuation theory of deeply ramified fields and its connection with defect extensions, Trans. Amer. Math. Soc. **376** (2023), no. 4, 2693–2738.
- Peter Scholze, **Perfectoid spaces**, Publ. math. IHÉS **116** (2012), no. 1, 245–313.