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An old example [F. Schur, 1882]

Consider the quartic X =
{
φ(x, y) = ψ(u, v)

}
, degφ = degψ = 4.

Wren,
1669;
Shukhov,
1880's.

Cayley,
1849;
Salmon,
1862

(Here, [x : y : u : v] are homogeneous coordinates in P3.)

P1, . . . , P4 = roots of φ on {u = v = 0}
Q1, . . . , Q4 = roots of ψ on {x = y = 0}

}
⇒ (Pi, Qj) ⊂ X.

Thus, we get 16 lines in X.
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→ An old example [F. Schur, 1882]

What if φ = ψ ? For k = 0,1,2,3,

u = ikx

v = iky

 ⇒ φ(x, y) = φ(ikx, iky) = i4kφ(x, y),

i.e., we get 4 more lines. For each Möbius transformation

[u : v] 7→ [u′ : v′] preserving φ, we get 4 more. Thus:

φ ̸= ψ : 16 lines,

|Autφ| = 4 (generic) : 32 lines,

|Autφ| = 8 (x4 + y4), Fermat : 48 lines,

|Autφ| =12 (x4 + xy3), Schur : 64 lines.

Remark 1 A generic quartic has no lines:

• codim
{
quartics ⊃ a �xed line

}
= 5 (�ve coe�s vanish);

• dimGr(4,2) = 4 < 5.
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→ An old example [F. Schur, 1882]

Theorem 2 [Segre, 1943] The maximal number of lines

on a smooth quartic is 64.

Proof : Pick a split plane section l1, l2, l3, l4 as in the example:
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Each line li intersects ni ⩽ 18 other lines;

each other line intersects one of li. Hence, the number is

(n1 − 3) + . . .+ (n4 − 3) + 4 ⩽ 4(18− 3) + 4 = 64. □
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→ An old example [F. Schur, 1882]

Remark 3 There are a few problems:

• ni ⩽ 18 is not correct: in fact, ni ⩽ 20, but these are rare

[Rams�Schütt, 2015; D.�Itenberg�Sertöz, 2016];

• does there always exist a split section? No! [loc. cit.]

If not, at most 48 (39??) lines [D.�Rams, 2024].

Numbers of lines are known [loc. cit.; D., 2019, 2022]:

tend to decrease, oscillate ⩽ 24 as ℏ2 → ∞

ℏ2 2 4 6 8 10 12 14 16 18 20 28 else

M 144 64 42 36 30 36 30 32 25 25 28 ⩽ 24

M̄ 130 48 35 30 28 28 26 24 24 24 24 < 24

(We know all con�gurations with > M̄(ℏ) lines.)
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Humbert sextics [D.�Dolgachev�K	ondo, 2025]

A sextic K3-surface: X = Q2 ∩Q3 ⊂ P4.
Hyperplane section: in X ∩H ⊂ Q2 ∩H = P1 × P1, deg = (3,3).
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Humbert line complex: cut by a cubic hypersurface on the

image Gr(4,2) ⊂ P5 under the Plücker embedding.

Humbert sextic K3-surface X: a generic hyperplane section.

In FnX, there are 16 fragments like this; play a major rôle.
Fano

graphProblem 4 [Dolgachev, 2025] What are the maximal numbers?

• On a smooth quartic X ⊂ P3, how many ℏ-fragments K(4)?

• On a smooth K3-sextic X ⊂ P4, how many K(3,3)'s?
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K3-surfaces

K3-surface X: compact surface/C with π1(X) = 0, KX = 0.
A class in Enriques�Kodaira classi�cation (≈ elliptic curves).
Unique minimal model (κ = 0) ⇒ usually minimal and smooth.
A single deformation family ⇒ topology is known.
Most non-algebraic; algebraic = countable

⋃
of hypersurfaces.

Best known algebraic examples:

• deg = 2: double planes X
×2−→ P2 ⊃ C6;

• deg = 4: quartics X4 ⊂ P3;
• deg = 6: sextics Q2 ∩Q3 ∈ P4;
• deg = 8: octics; mostly triquadrics Q′

2 ∩Q′′
2 ∩Q′′′

2 ⊂ P5.

In general, a K3-surface of degree ℏ2 = 2d (2d-polarized):

X −→ Pd+1.

No longer complete intersections (for ℏ2 ⩾ 10).
Occasionally can allow A�D�E singularities; here, all are smooth.
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The magic of K3-surfaces

In a nutshell, given a graph Γ, there is a script [D.�Rams, 2025]
that tells us if Γ is (a subgraph of) the Fano graph FnX
of a (smooth) 2d-polarized K3-surface X ⊂ Pd+1.

• [Pjatecki��-�apiro��afarevi£, 1971; Kulikov, 1977];

• [Riemann�Roch; Hodge; Saint-Donat, 1974];

• [Nikulin, 1979; Vinberg, 1972];

• [Beauville, Dolgachev, Huybrechts, . . . ].

For example:
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∆ :=
∑

•, ∆ :=
∑

•.

∆2 = ∆2 = ∆ ·∆ = 0 but v ·∆ = 2 ̸= 1 = v ·∆.
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Quartics [D., 202?]

Theorem 5 A quartic X ∈ P3 has ⩽ 72 K(4)-fragments.

Proof : Consider a bouquet of ℏ-fragments at a line l:
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q ⩽ 12 10 9 7 6 3 2

(In particular, this implies val l ⩽ 20.)

Thus,

#K(4) ⩽
6

4
|FnX| ⩽ 72 if |FnX| ⩽ 48.

Con�gurations with >48 lines are known [D.�Rams, 2024]. □

Remark 6 Conjecturally, the number of K(4)-fragments is ⩽ 48,

with a few explicit exceptions.

The only quartic with 72 fragments is Schur's:

the known champion in quite a few similar problems.
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Sextics [D., 202?]

Properties of ℏ-fragments Σ ⊂ FnX s.t.
∑
v∈Σ v = ℏ.

(All is happening in NS(X) ≈ (ZΓ+ Zℏ)/radical.)

1. An ℏ-fragment Σ is a 3-regular (aka cubic) graph:
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{-2 − 2+ val v = ℏ · v = 1.

2. One has |Σ| = ℏ2.
(Automatically |Σ| ⩾ ℏ2 as

∑
v is the intrinsic polarization.)

3. Any u ∈ FnX ∖Σ is adjacent to exactly one v ∈ Σ.

4. ∆ := Σ1 ∩Σ2 is a perfect subset of Σi.

Adjacency of Σ1 ∖∆ and Σ2 ∖∆ is a bijection of

the perfect complements Σ1 ∖∖∆ ∼= Σ2 ∖∖∆ (as sets):
not
graph!@
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→ Sextics [D., 202?]

Theorem 7 A sextic X ∈ P4 has ⩽ 40 K(3,3)-fragments.

Proof : there are but two proper perfect subsets of K(3,3):
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The star of a line in FnX is aA1 ⊕ bA2, a ⩽ 9, b ⩽ 1.
Hence, a bouquet of K(3,3)-fragments is (almost) determined
by their �germs�, i.e., a collection S of 3-elements subsets

s ⊂ S := {1, . . . ,9} s.t. |r △ s| ∈ {0,4,6} ∀ r, s ∈ S.

One has |S| ⩽ 12; the two sets with |S| = 11,12 are ruled out.
Thus,

#K(3,3) ⩽
10

6
|FnX| ⩽ 58 if |FnX| ⩽ 35.

Alas, we get no proof!! □
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Degrees 8 and 10

Suggested by wild guessing and my sense of beauty:

ℏ2 = 8:
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Theorem 8 [D., 202?] The sharp upper bounds are:

• at most 80 cube fragments (ℏ2 = 8);

• at most 16 Petersen fragments (ℏ2 = 10).
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→ Degrees 8 and 10
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The �rst one is ruled out by our �magic.�

As in the case of sextics, a bouquet is determined by the �germs�,
i.e., a collection S of 3-element subsets s ⊂ S := {1, . . . ,6}.
Any collection is realized by a subgraph of FnX.
There are 14 full bouquets, with the counts

1,2,2,2,3,3,4,4,4,5,5,7,8,20,

and we can proceed with the proof as in the case of quartics:
all con�gurations with > 30 lines are known [D., 2019].
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→ Degrees 8 and 10

Degree 10 is trickier:
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The situation is more involved: �germs� no longer su�ce.
We need other means (discussed below).

13



All degrees

To go further, need a systematic classi�cation of ℏ-fragments.

Use the taxonomy of hyperbolic graphs suggested in [D., 2019]

(according to the minimal a�ne Dynkin sub-diagram):

• Ã2-, Ã3-, Ã4-, or Ã5-graphs; one section at each edge

(starting from Ã6, cannot make cubic without a D̃5), or

• D̃5-graphs, with all eight simple sections.
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Use common sense (elliptic pencils) �rst, then the �magic.�

Altogether, 48 simple graphs found, plus { { for ℏ2 = 2.
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→ All degrees

Sextics: two graphs (max = 36+ 40 = 76)
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P1
0..6,8,9,10,12,15,16,18,20,25,36︸ ︷︷ ︸

0..34,36,48,49,76

0..24,26,27,29,30,36,40
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→ All degrees

Octics: three graphs (max = 72 or 0+ 80 = 80)
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special triquadric triquadric

0..10,12,14,16,

18,20,36,42,72

0..16,18..21,

24,32,48

0..13,16,20,

21,32,80︸ ︷︷ ︸
0..18,20,21,23,24,26,36,56,64,80

Remark 9 The last two: base locus of a net of quadrics in P4.
Probably, Wagner means some sort of degeneration, too.

(Fewer squares ⇒ fewer pairs of P3.) Still to be understood.
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→ All degrees

Degree ℏ2 = 10: six graphs (max = 16)
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0,1,3,6,15 0, . . . ,8,11,14,16

Problem 10 What does this all mean geometrically?

Same about higher degrees.

Remark 11 Starting from ℏ2 = 10, distinct ℏ-fragments

do not �mix� very well.
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→ All degrees

The principal result

Theorem 12 The numbers of ℏ-fragments and maximal total

counts are as follows:

ℏ2 = 2d 2 4 6 8 10 12 14 16 18 20 22 24 28

graphs 1 1 2 3 6 9 8 8 5 3 1 1 1

max# 72 72 76 80 16 90 12 24 3 4 1 1 1

Proof : for ℏ2 ⩾ 6, it is easier to list all ℏ-con�gurations, i.e.,
unions of ℏ-fragments; then, everything can be studied.

We add a whole ℏ-fragment at a time, increasing the rank fast.

There are restrictions on Γ ∪Σ similar to Σ1 ∪Σ2 above.

For ℏ2 ⩾ 14, easier to list all con�gurations (a line at a time).

Still there are restrictions ⇒ converges fast. □
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Thank you!



*

Marginal notes
1

/ 0: Wren, 1669; Shukhov, 1880's.

Cayley, 1849; Salmon, 1862
2

/ 0: Fano graph

3

/ 0: not graph!


