Split hyperplane sections on polarized K3-surfaces

Alex Degtyarev

(Bilkent University)

An old example [F. Schur, 1882]

Consider the quartic $X = \{\varphi(x,y) = \psi(u,v)\}$, $\deg \varphi = \deg \psi = 4$. (Here, [x:y:u:v] are homogeneous coordinates in \mathbb{P}^3 .)

$$P_1, \ldots, P_4 = \text{roots of } \varphi \text{ on } \{u = v = 0\}$$

 $Q_1, \ldots, Q_4 = \text{roots of } \psi \text{ on } \{x = y = 0\}$ $\Rightarrow (P_i, Q_j) \subset X.$

Thus, we get 16 lines in X.

Wren, 1669; Shukhov 1880's.

Cayley, 1849; Salmon, 1862

→ An old example [F. Schur, 1882]

What if $\varphi = \psi$? For k = 0, 1, 2, 3,

i.e., we get 4 more lines. For each Möbius transformation $[u:v]\mapsto [u':v']$ preserving φ , we get 4 more. Thus:

$$\varphi \neq \psi$$
: 16 lines, $|\text{Aut }\varphi| = 4 \text{ (generic)}$: 32 lines, $|\text{Aut }\varphi| = 8 (x^4 + y^4), Fermat$: 48 lines, $|\text{Aut }\varphi| = 12 (x^4 + xy^3), Schur$: 64 lines.

Remark 1 A generic quartic has no lines:

- $\operatorname{codim} \{ \operatorname{quartics} \supset \operatorname{a fixed line} \} = 5 \text{ (five coeffs vanish)};$
- dim Gr(4,2) = 4 < 5.

→ An old example [F. Schur, 1882]

Theorem 2 [Segre, 1943] The maximal number of lines on a smooth quartic is 64.

Proof: Pick a split plane section l_1, l_2, l_3, l_4 as in the example:

Each line l_i intersects $n_i \leq 18$ other lines; each other line intersects one of l_i . Hence, the number is

$$(n_1-3)+\ldots+(n_4-3)+4 \le 4(18-3)+4=64.$$

→ An old example [F. Schur, 1882]

Remark 3 There are a few problems:

- $n_i \leqslant$ 18 is not correct: in fact, $n_i \leqslant$ 20, but these are rare [Rams-Schütt, 2015; D.-Itenberg-Sertöz, 2016];
- does there always exist a split section? No! [loc. cit.] If not, at most 48 (39??) lines [D.—Rams, 2024].

Numbers of lines are known [loc. cit.; D., 2019, 2022]: tend to decrease, oscillate \leq 24 as $\hbar^2 \to \infty$

\hbar^2	2	4	6	8	10	12	14	16	18	20	28	else
\overline{M}	144	64	42	36	30	36	30	32	25	25	28	€ 24
$ar{M}$	130	48	35	30	28	28	26	24	24	24	24	< 24

(We know all configurations with $> \overline{M}(\hbar)$ lines.)

Humbert sextics [D.-Dolgachev-Kondo, 2025]

A sextic K3-surface: $X = Q_2 \cap Q_3 \subset \mathbb{P}^4$.

Hyperplane section: in $X \cap H \subset Q_2 \cap H = \mathbb{P}^1 \times \mathbb{P}^1$, deg = (3,3).

Humbert line complex: cut by a cubic hypersurface on the image $Gr(4,2) \subset \mathbb{P}^5$ under the Plücker embedding. Humbert sextic K3-surface X: a generic hyperplane section.

In $\operatorname{Fn} X$, there are 16 fragments like this; play a major rôle.

Fano c 7 graph

Problem 4 [Dolgachev, 2025] What are the maximal numbers? graph

- On a smooth quartic $X \subset \mathbb{P}^3$, how many \hbar -fragments K(4)?
- On a smooth K3-sextic $X \subset \mathbb{P}^4$, how many K(3,3)'s?

*K*3-surfaces

K3-surface X: compact surface/ $\mathbb C$ with $\pi_1(X)=0$, $K_X=0$. A class in *Enriques–Kodaira classification* (\approx elliptic curves). Unique minimal model ($\kappa=0$) \Rightarrow usually *minimal* and *smooth*. A single deformation family \Rightarrow topology is known. Most non-algebraic; algebraic = countable \cup of hypersurfaces. Best known algebraic examples:

- deg = 2: double planes $X \xrightarrow{\times 2} \mathbb{P}^2 \supset C_6$;
- deg = 4: quartics $X_4 \subset \mathbb{P}^3$;
- deg = 6: sextics $Q_2 \cap Q_3 \in \mathbb{P}^4$;
- deg = 8: octics; mostly triquadrics $Q_2' \cap Q_2'' \cap Q_2''' \subset \mathbb{P}^5$.

In general, a K3-surface of degree $\hbar^2 = 2d$ (2d-polarized):

$$X \longrightarrow \mathbb{P}^{d+1}$$
.

No longer complete intersections (for $\hbar^2 \geqslant 10$).

Occasionally can allow A-D-E singularities; here, all are smooth.

The magic of K3-surfaces

In a nutshell, given a graph Γ , there is a script [D.-Rams, 2025] that tells us if Γ is (a subgraph of) the Fano graph $\operatorname{Fn} X$ of a (smooth) 2d-polarized K3-surface $X \subset \mathbb{P}^{d+1}$.

- [Pjateckiĭ-Šapiro-Šafarevič, 1971; Kulikov, 1977];
- [Riemann-Roch; Hodge; Saint-Donat, 1974];
- [Nikulin, 1979; Vinberg, 1972];
- [Beauville, Dolgachev, Huybrechts, . . .].

For example:

Quartics [D., 202?]

Theorem 5 A quartic $X \in \mathbb{P}^3$ has ≤ 72 K(4)-fragments.

Proof: Consider a bouquet of \hbar -fragments at a line l:

(In particular, this implies val $l \leq 20$.)

Thus,

$$\#K(4) \leqslant \frac{6}{4} |\text{Fn } X| \leqslant 72 \quad \text{if} \quad |\text{Fn } X| \leqslant 48.$$

Configurations with >48 lines are known [D.-Rams, 2024]. \Box

Remark 6 Conjecturally, the number of K(4)-fragments is ≤ 48 , with a few explicit exceptions.

The only quartic with 72 fragments is Schur's: the known champion in quite a few similar problems.

Sextics [D., 202?]

Properties of \hbar -fragments $\Sigma \subset \operatorname{Fn} X$ s.t. $\sum_{v \in \Sigma} v = \hbar$. (All is happening in $\operatorname{NS}(X) \approx (\mathbb{Z}\Gamma + \mathbb{Z}\hbar)/\operatorname{radical.})$

1. An \hbar -fragment Σ is a 3-regular (aka cubic) graph:

$$-2 + \operatorname{val} v = \hbar \cdot v = 1.$$

- 2. One has $|\Sigma| = \hbar^2$. (Automatically $|\Sigma| \ge \hbar^2$ as $\sum v$ is the *intrinsic polarization*.)
- 3. Any $u \in \operatorname{Fn} X \setminus \Sigma$ is adjacent to **exactly one** $v \in \Sigma$.
- 4. $\Delta := \Sigma_1 \cap \Sigma_2$ is a *perfect subset* of Σ_i . Adjacency of $\Sigma_1 \setminus \Delta$ and $\Sigma_2 \setminus \Delta$ is a bijection of the *perfect complements* $\Sigma_1 \setminus \Delta \cong \Sigma_2 \setminus \Delta$ (as sets):

not graph!

→ **Sextics** [D., 202?]

Theorem 7 A sextic $X \in \mathbb{P}^4$ has ≤ 40 K(3,3)-fragments.

Proof: there are but two proper perfect subsets of K(3,3):

The star of a line in $\operatorname{Fn} X$ is $a\mathbf{A_1} \oplus b\mathbf{A_2}$, $a \leqslant 9$, $b \leqslant 1$. Hence, a bouquet of K(3,3)-fragments is (almost) determined by their "germs", *i.e.*, a collection S of 3-elements subsets

$$s \subset \mathfrak{S} := \{1, \dots, 9\}$$
 s.t. $|r \vartriangle s| \in \{0, 4, 6\} \quad \forall r, s \in \mathcal{S}.$

One has $|\mathcal{S}| \leqslant 12$; the two sets with $|\mathcal{S}| = 11, 12$ are ruled out. Thus,

$$\#K(3,3) \leqslant \frac{10}{6} |\text{Fn } X| \leqslant 58 \quad \text{if} \quad |\text{Fn } X| \leqslant 35.$$

Alas, we get no proof!!

Degrees 8 and 10

Suggested by wild guessing and my sense of beauty:

Theorem 8 [D., 202?] The sharp upper bounds are:

- at most 80 cube fragments ($\hbar^2 = 8$);
- at most 16 Petersen fragments ($\hbar^2 = 10$).

\rightarrow Degrees 8 and 10

The first one is ruled out by our "magic."

As in the case of sextics, a bouquet is determined by the "germs", i.e., a collection S of 3-element subsets $s \subset \mathfrak{S} := \{1, \dots, 6\}$. Any collection is realized by a **sub**graph of $\operatorname{Fn} X$. There are 14 full bouquets, with the counts

and we can proceed with the proof as in the case of quartics: all configurations with > 30 lines are known [D., 2019].

\rightarrow Degrees 8 and 10

Degree 10 is trickier:

The situation is more involved: "germs" no longer suffice. We need other means (discussed below).

All degrees

To go further, need a systematic classification of \hbar -fragments. Use the taxonomy of hyperbolic graphs suggested in [D., 2019] (according to the minimal affine Dynkin sub-diagram):

- \tilde{A}_2 -, \tilde{A}_3 -, \tilde{A}_4 -, or \tilde{A}_5 -graphs; **one** section at each edge (starting from \tilde{A}_6 , cannot make cubic without a \tilde{D}_5), or
- ullet $ilde{\mathbf{D}}_5$ -graphs, with **all eight** simple sections.

Use common sense (elliptic pencils) first, then the "magic."

Altogether, 48 simple graphs found, plus $\bullet \bullet \bullet$ for $\hbar^2 = 2$.

ightarrow All degrees

Sextics: two graphs ($\max = 36 + 40 = 76$)

\rightarrow All degrees

Octics: three graphs (max = 72 or 0 + 80 = 80)

Remark 9 The last two: base locus of a net of quadrics in \mathbb{P}^4 . Probably, Wagner means some sort of degeneration, too. (Fewer squares \Rightarrow fewer pairs of \mathbb{P}^3 .) Still to be understood.

\rightarrow All degrees

Degree $\hbar^2 = 10$: six graphs (max = 16)

Problem 10 What does this all mean geometrically? Same about higher degrees.

Remark 11 Starting from $\hbar^2 = 10$, distinct \hbar -fragments do not "mix" very well.

\rightarrow All degrees

The principal result

Theorem 12 The numbers of \hbar -fragments and maximal total counts are as follows:

$$\frac{\hbar^2 = 2d}{\text{graphs}}$$
 2 4 6 8 10 12 14 16 18 20 22 24 28 graphs 1 1 2 3 6 9 8 8 5 3 1 1 1 max# 72 72 76 80 16 90 12 24 3 4 1 1

Proof: for $\hbar^2 \geqslant 6$, it is easier to list all \hbar -configurations, i.e., unions of \hbar -fragments; then, everything can be studied. We add a whole \hbar -fragment at a time, increasing the rank fast. There are restrictions on $\Gamma \cup \Sigma$ similar to $\Sigma_1 \cup \Sigma_2$ above.

For $\hbar^2 \geqslant 14$, easier to list all configurations (a line at a time). Still there are restrictions \Rightarrow converges fast.

Thank you!

*

```
Marginal notes

/ O: Wren, 1669; Shukhov, 1880's.

Cayley, 1849; Salmon, 1862

/ O: Fano graph

3

/ O: not graph!
```