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Motivations

Question (L. S. Krapp, S. Kuhlmann, M. Link ’23)

Describe the following classes:

D(∅)−field = {k field | if (K , v) is a henselian valued field with Kv = k ,
then v is (∅)-definable inLrings}.

D(∅)−oag = {Γoag | if (K , v) is a henselian valued field with vK = Γ,

then v is (∅)-definable inLrings}.

Definition

A field k is t-henselian if k ≡ k ′ for some k ′ which admits a non-trivial
henselian valuation.
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Motivations

Theorem (A. Fehm, F. Jahnke ’15)

Let (K , v) be a henselian valued field with non separably closed
residue field. If Kv is not t-henselian then v is ∅-definable in Lring .

Theorem (F. Jahnke, J. Koenigsmann ’17)

Let K be a field such that K ̸= K sep. Then K admits a non-trivial
definable henselian valuation unless KvK ̸= Kvsep

K and KvK is
t-henselian and vK K is divisible.

As a Corollary they prove a characterization theorem for fields with
residue characteristic 0 admitting a non-trivial definable henselian
valuation, generalized by M. Ketelsen, S. Ramello and P. Szewczyk
(2024) for arbitrary residue field.
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Motivations

Theorem (S. Anscombe, A. Fehm ’17)

Let F be a field. TFAE:
there is a ∃-Lring-formula that defines Ov [respectively mv ] in K
for some non trivially valued henselian field (K , v) with residue
field F ;
there is a ∃-Lring-formula that defines Ov [respectively mv ] in K
for every henselian valued field (K , v) with residue field
elementarily equivalent to F ;
there is no elementary extension F ⪯ F ∗ with a non-trivial
valuation v on F ∗ such that F ∗v embeds in F ∗ [resp. with a
non-trivial henselian valuation on a subfield E of F ∗ such that
Ev ∼= F ∗].

Remark. t-henselian =⇒ embedded residue + large.
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Example

Let K be a field such that char(K ) = 0 and K ≡ K ((Z))
(e.g. K = Q((

⊕
ω Z)), by

⊕
ω Z ≡ Z⊕

⊕
ω Z)

Consider Γ =
⊕

ω∗ Z and (K ((Γ)), vΓ).

Then vΓ is not ∅-definable in Lring :

L = K ((Z))
u︷ ︸︸ ︷

((Γ))︸ ︷︷ ︸
w

is such that

(L,u, Γ,K ((Z))) ≡ (L,w , Γ⊕ Z,K ) ≡ (K ((Γ)), vΓ, Γ,K )

(by K ≡ K ((Z)), Γ ≡ Γ⊕ Z and Ax-Kochen/Ershov)
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Augmentable ordered abelian groups

Definition
An oag G is Augmentable by Infinites if there is a non-trivial oag ∆
such that G ⪯ ∆⊕ G.

By the results of Schmitt (’82) and Cluckers-Halupczok (2011), many
properties of ordered abelian groups can be reduces to properties of
their spines.

Definition

The spines A(G) is a collection of uniformily definable families of
convex subgroups of G, ordered by inclusion and equipped with some
unary predicates (colours) for first-order properties (e.g. discr ,...).

Anna De Mase Augmentable ordered abelian groups and definable henselian valuations



Augmentable ordered abelian groups

Fact (Cluckers-Halupczok/Schmitt)

Let G,G′ be ordered abelian groups. Then

G ≡ G′ ⇐⇒ A(G) ≡ A(G′).

Moreover, if G ⊆ G′, then

G ⪯ G′ ⇐⇒ A(G) ⪯ A(G′).

Lemma (F. Delon, F. Lucas ’89)

Let G ⪯ G′ be oags and H = ⟨G⟩G′ the convex hull of G in G′. Then

G ⪯ H ⪯ G′.
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Augmentable ordered abelian groups

Theorem (Boissonneau, DM, Jahnke, Touchard)

All non-trivial ordered abelian groups are Augmentable by Infinites.

Proof.

Let G be a non-trivial oag and consider an elementary extension G′

that realizes a type at +∞. Take H = ⟨G⟩G′ , then G ⪯ H ⪯ G′ and
G′/H ̸= {0}. Take (G′,H) ⪯ (G∗,H∗) saturated such that the exact
sequence

0 −→ H∗ −→ G∗ −→ G∗/H∗ −→ 0

splits. Since H ⪯ H∗, then G ⪯ H∗. So we have

G∗/H∗ ⊕ G ⪯ G∗/H∗ ⊕ H∗ ∼= G∗.

Since G ⊆ G∗/H∗ ⊕ G and G ⪯ G∗, then G ⪯ G∗/H∗ ⊕ G.
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Definability by properties of the residue field

Lemma (Boissonneau, DM, Jahnke, Touchard)

Let k be a field with char(k) = 0. If k is t-henselian, then k ⪯ k((∆))
for some non-trivial oag ∆.

Sketch.
We may assume k saturated. By Prestel-Ziegler k admits a non-trivial
equicharacteristic 0 valuation v . We may assume (k , v) saturated, so
that (k , v) ⪯ (kv((vk)),u) by Ax-Kochen/Ershov. Set Γ := vk .
By the theorem Γ ⪯ ∆⊕ Γ for some non-trivial oag ∆. Then

k ⪯ kv((Γ)) ⪯ kv((∆⊕ Γ))

and
k((∆)) ⪯ kv((Γ))((∆)) ∼= kv((∆⊕ Γ)).

It follows that k ⪯ k((∆)).
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Definability by properties of the residue field

Theorem (Boissonneau, DM, Jahnke, Touchard)
Let k be a field with char(k) = 0. TFAE:

1 k is not t-henselian;
2 every henselian valuation v with residue field kv = k is

definable in Lring;
3 every henselian valuation v with residue field kv = k is

∅-definable in Lring;
4 there is a ∅-Lring-formula uniformly defining every

henselian valuation v with residue field kv ≡ k.
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Definability by properties of the residue field

Sketch.

2) ⇒ 1). Assume k t-henselian. Then k ⪯ k((∆)) for some non-trivial
oag ∆.
By Tarski chain lemma, we have

k ⪯ k((∆)) ⪯ k((∆−1 ⊕∆0 ⊕∆+1)) ⪯ . . . ⪯ k((
⊕
Z

∆)).

Let Γ :=
⊕

Z ∆, and consider K = (k((Γ)), v). Note that Γ ⪯ Γ⊕ Γ′,
where Γ′ is a copy of Γ (holds by playing Ehrenfeucht–Fraïssé
games). Then

K ∗ = k ((Γ′))

w︷ ︸︸ ︷
((Γ))︸ ︷︷ ︸

u

is such that K ⪯ (K ∗,w) and K ⪯ (K ∗,u), i.e. v has residue field k
and it is not definable in Lring .
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Definability by properties of the value group

Definition
An oag G is augmentable by infinitesimals if there is a non-trivial oag
∆ such that G ⪯ G ⊕∆.

Proposition

Let G be an oag. If G is augmentable by infinitesimals, then there is a
henselian valuation with value group G which is not definable in Lrings.

Question1. Does the converse hold?
Question2. Characterize oags augmentable by infinitesimals.

Theorem (Boissonneau, DM, Jahnke, Touchard)

Let (K , v) be an equicharacteristic 0 henselian valued field with value
group G and residue field k. Then v is not definable in Lring if and only
if there is a non-trivial oag ∆ such that G ⪯ G ⊕∆ and k ⪯ k((∆)).
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About characteristic p

Question3. What about residue fields of characteristic p?
Problem. Let k be a perfect field. Then k ⪯ k((∆)) implies k((∆))
tame, since ∆ is p-divisible (F.V. Kuhlmann ’16). But there are perfect
fields with no elementary extension which admit a tame valuation
(e.g.

(
Fp((t))U

)perf ). We have

k ⪯ k((Γ)) for some non-trivial ordered abelian group Γ
⇓

there is a henselian valued field (K , v) with Kv = k such that v is not
definable

⇓
there is a henselian valued field (K , v) with Kv = k such that v is not

∅-definable
⇓

henselian valuations with residue field elementarily equivalent to k
are not uniformly ∅-definable in Lring

⇓
k is t-henselian.
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