Augmentable ordered abelian groups and definable henselian valuations

Anna De Mase j.w. Blaise Boissonneau, Franziska Jahnke, Pierre Touchard

Università Roma Tre

DDG40 - Structures algébriques ordonnées 05.08.2025, Banyuls-sur-mer

Anna De Mase

Augmentable ordered abelian groups and definable henselian valuations

Motivations

Question (L. S. Krapp, S. Kuhlmann, M. Link '23)

Describe the following classes:

 $D_{(\emptyset)-\textit{field}} = \{ \textit{k field} \mid \textit{if}(\textit{K},\textit{v}) \text{ is a henselian valued field with } \textit{Kv} = \textit{k}, \\ \textit{then } \textit{v is}(\emptyset) \textit{-definable in} \mathfrak{L}_{\textit{rings}} \}.$

 $D_{(\emptyset)-oag} = \{\Gamma \ oag \ | \ if(K,v) \ is \ a \ henselian \ valued \ field \ with \ vK = \Gamma, \ then \ v \ is (\emptyset) - definable \ in \ \mathfrak{L}_{rings} \}.$

Definition

A field k is t-henselian if $k \equiv k'$ for some k' which admits a non-trivial henselian valuation.

Motivations

Theorem (A. Fehm, F. Jahnke '15)

Let (K, v) be a henselian valued field with non separably closed residue field. If Kv is not t-henselian then v is \emptyset -definable in \mathfrak{L}_{ring} .

Theorem (F. Jahnke, J. Koenigsmann '17)

Let K be a field such that $K \neq K^{\text{sep}}$. Then K admits a non-trivial definable henselian valuation unless $Kv_K \neq Kv_K^{\text{sep}}$ and Kv_K is t-henselian and $v_K K$ is divisible.

As a Corollary they prove a characterization theorem for fields with residue characteristic 0 admitting a non-trivial definable henselian valuation, generalized by M. Ketelsen, S. Ramello and P. Szewczyk (2024) for arbitrary residue field.

Anna De Mase

Augmentable ordered abelian groups and definable henselian valuations

Motivations

Theorem (S. Anscombe, A. Fehm '17)

Let F be a field. TFAE:

- there is a \exists - \mathfrak{L}_{ring} -formula that defines O_v [respectively \mathfrak{m}_v] in K for some non trivially valued henselian field (K, v) with residue field F;
- there is a ∃-£_{ring}-formula that defines O_v [respectively m_v] in K for every henselian valued field (K, v) with residue field elementarily equivalent to F;
- there is no elementary extension $F \leq F^*$ with a non-trivial valuation v on F^* such that F^*v embeds in F^* [resp. with a non-trivial henselian valuation on a subfield E of F^* such that $Ev \cong F^*$].

Remark. t-henselian ⇒ embedded residue + large.

Example

Let K be a field such that char(K) = 0 and $K \equiv K((\mathbb{Z}))$ (e.g. $K = \mathbb{Q}((\bigoplus_{\omega} \mathbb{Z}))$, by $\bigoplus_{\omega} \mathbb{Z} \equiv \mathbb{Z} \oplus \bigoplus_{\omega} \mathbb{Z}$)

Consider $\Gamma = \bigoplus_{\omega^*} \mathbb{Z}$ and $(K((\Gamma)), \nu_{\Gamma})$.

Then v_{Γ} is **not** \emptyset -definable in \mathfrak{L}_{ring} :

$$L = K((\mathbb{Z}))(\Gamma)$$

is such that

$$(L, u, \Gamma, K((\mathbb{Z}))) \equiv (L, w, \Gamma \oplus \mathbb{Z}, K) \equiv (K((\Gamma)), v_{\Gamma}, \Gamma, K)$$

(by $K \equiv K((\mathbb{Z}))$, $\Gamma \equiv \Gamma \oplus \mathbb{Z}$ and Ax-Kochen/Ershov)

Anna De Mase

Augmentable ordered abelian groups and definable henselian valuations

Augmentable ordered abelian groups

Definition

An oag G is Augmentable by Infinites if there is a non-trivial oag Δ such that $G \prec \Delta \oplus G$.

By the results of Schmitt ('82) and Cluckers-Halupczok (2011), many properties of ordered abelian groups can be reduces to properties of their *spines*.

Definition

The spines A(G) is a collection of uniformily definable families of convex subgroups of G, ordered by inclusion and equipped with some unary predicates (colours) for first-order properties (e.g. discr,...).

Augmentable ordered abelian groups

Fact (Cluckers-Halupczok/Schmitt)

Let G, G' be ordered abelian groups. Then

$$G \equiv G' \iff \mathcal{A}(G) \equiv \mathcal{A}(G').$$

Moreover, if $G \subseteq G'$, then

$$G \leq G' \iff \mathcal{A}(G) \leq \mathcal{A}(G')$$
.

Lemma (F. Delon, F. Lucas '89)

Let $G \subseteq G'$ be oags and $H = \langle G \rangle_{G'}$ the convex hull of G in G'. Then

$$G \leq H \leq G'$$
.

Anna De Mase

Augmentable ordered abelian groups and definable henselian valuations

Augmentable ordered abelian groups

Theorem (Boissonneau, DM, Jahnke, Touchard)

All non-trivial ordered abelian groups are Augmentable by Infinites.

Proof.

Let G be a non-trivial oag and consider an elementary extension G' that realizes a type at $+\infty$. Take $H = \langle G \rangle_{G'}$, then $G \leq H \leq G'$ and $G'/H \neq \{0\}$. Take $(G',H) \leq (G^*,H^*)$ saturated such that the exact sequence

$$0 \longrightarrow H^* \longrightarrow G^* \longrightarrow G^*/H^* \longrightarrow 0$$

splits. Since $H \leq H^*$, then $G \leq H^*$. So we have

$$G^*/H^* \oplus G \leq G^*/H^* \oplus H^* \cong G^*$$
.

Since $G \subseteq G^*/H^* \oplus G$ and $G \preceq G^*$, then $G \preceq G^*/H^* \oplus G$.

Anna De Mase

Definability by properties of the residue field

Lemma (Boissonneau, DM, Jahnke, Touchard)

Let k be a field with char(k) = 0. If k is t-henselian, then $k \leq k((\Delta))$ for some non-trivial oag Δ .

Sketch.

We may assume k saturated. By Prestel-Ziegler k admits a non-trivial equicharacteristic 0 valuation v. We may assume (k, v) saturated, so that $(k, v) \leq (kv((vk)), u)$ by Ax-Kochen/Ershov. Set $\Gamma := vk$. By the theorem $\Gamma \leq \Delta \oplus \Gamma$ for some non-trivial oag Δ . Then

$$k \leq kv((\Gamma)) \leq kv((\Delta \oplus \Gamma))$$

and

$$k((\Delta)) \leq kv((\Gamma))((\Delta)) \cong kv((\Delta \oplus \Gamma)).$$

It follows that $k \leq k((\Delta))$.

Anna De Mase

Augmentable ordered abelian groups and definable henselian valuations

Definability by properties of the residue field

Theorem (Boissonneau, DM, Jahnke, Touchard)

Let k be a field with char(k) = 0. TFAE:

- k is not t-henselian;
- ② every henselian valuation v with residue field $k_v = k$ is definable in \mathfrak{L}_{ring} ;
- every henselian valuation v with residue field $k_v = k$ is \emptyset -definable in \mathfrak{L}_{ring} ;
- there is a \emptyset - \mathfrak{L}_{ring} -formula uniformly defining every henselian valuation v with residue field $k_v \equiv k$.

Definability by properties of the residue field

Sketch.

2) \Rightarrow 1). Assume k t-henselian. Then $k \leq k((\Delta))$ for some non-trivial oag Δ .

By Tarski chain lemma, we have

$$k \leq k((\Delta)) \leq k((\Delta_{-1} \oplus \Delta_0 \oplus \Delta_{+1})) \leq \ldots \leq k((\bigoplus_{\mathbb{Z}} \Delta)).$$

Let $\Gamma := \bigoplus_{\mathbb{Z}} \Delta$, and consider $K = (k((\Gamma)), v)$. Note that $\Gamma \leq \Gamma \oplus \Gamma'$, where Γ' is a copy of Γ (holds by playing Ehrenfeucht–Fraïssé games). Then

$$K^* = k\underbrace{((\Gamma'))\underbrace{((\Gamma))}_{u}}_{u}$$

is such that $K \leq (K^*, w)$ and $K \leq (K^*, u)$, i.e. v has residue field k and it is not definable in \mathfrak{L}_{ring} .

Anna De Mase

Augmentable ordered abelian groups and definable henselian valuations

Definability by properties of the value group

Definition

An oag G is augmentable by infinitesimals if there is a non-trivial oag Δ such that $G \prec G \oplus \Delta$.

Proposition

Let G be an oag. If G is augmentable by infinitesimals, then there is a henselian valuation with value group G which is not definable in \mathfrak{L}_{rings} .

Question1. Does the converse hold?

Question2. Characterize oags augmentable by infinitesimals.

Theorem (Boissonneau, DM, Jahnke, Touchard)

Let (K, v) be an equicharacteristic 0 henselian valued field with value group G and residue field k. Then v is not definable in \mathfrak{L}_{ring} if and only if there is a non-trivial oag Δ such that $G \leq G \oplus \Delta$ and $k \leq k((\Delta))$.

About characteristic p

Question3. What about residue fields of characteristic p? *Problem.* Let k be a perfect field. Then $k \leq k((\Delta))$ implies $k((\Delta))$ tame, since Δ is p-divisible (F.V. Kuhlmann '16). But there are perfect fields with no elementary extension which admit a tame valuation (e.g. $(\mathbb{F}_p((t))^{\mathcal{U}})^{perf}$). We have

 $k \leq k((\Gamma))$ for some non-trivial ordered abelian group Γ

there is a henselian valued field (K, v) with Kv = k such that v is not definable

there is a henselian valued field (K, v) with Kv = k such that v is not Ø-definable

henselian valuations with residue field elementarily equivalent to kare not uniformly \emptyset -definable in \mathcal{L}_{ring}

k is *t*-henselian.

Anna De Mase

Augmentable ordered abelian groups and definable henselian valuations