A Hierarchy of Expressive Power for Büchi Automata

Alexi Block Gorman

Laboratoire d'Informatique Gaspard Monge

Université Gustave-Eiffel

Automata Terminology

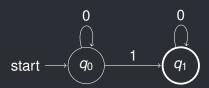
For an alphabet Σ , let Σ^* denote all strings Σ generates.

Call any subset $L \subseteq \Sigma^*$ a language. Say that an automaton A recognizes L if for all $w \in \Sigma^*$, running A on input w ends in an accept state iff $w \in L$. If L is recognized by some automaton, call it regular.

Automata Terminology

For an alphabet Σ , let Σ^* denote all strings Σ generates.

Call any subset $L \subseteq \Sigma^*$ a language. Say that an automaton A recognizes L if for all $w \in \Sigma^*$, running A on input w ends in an accept state iff $w \in L$. If L is recognized by some automaton, call it regular.



Example: The language this automaton recognizes is

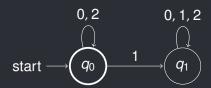
$$L = 0*10* = \{0^n10^m : n, m \in \mathbb{N}\}.$$

Büchi automata

Büchi automata (BA) differ from traditional automata in that they accept infinite length strings rather than finite length. We say the automaton accepts a string if it enters an accept state infinitely often.

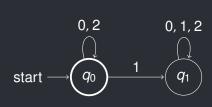
Büchi automata

Büchi automata (BA) differ from traditional automata in that they accept infinite length strings rather than finite length. We say the automaton accepts a string if it enters an accept state infinitely often.



Büchi automata

Büchi automata (BA) differ from traditional automata in that they accept infinite length strings rather than finite length. We say the automaton accepts a string if it enters an accept state infinitely often.



View the input strings for this automaton as the ternary representations for points in [0,1], i.e. if $x = d_1 \frac{1}{3} + d_2 \frac{1}{9} + \dots$ (with digits $d_1, d_2, \dots \in \{0,1,2\}$) then " $d_1 d_2 \dots$ " is the input.

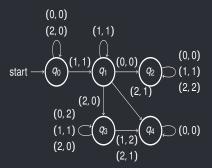
Say that $X \subseteq [0, 1]$ is k-regular if there is a BA that accepts an input iff the input is a base-k expansion of some $x \in X$.

Higher-arity

Instead of one digit at a time, Büchi automata can read tuples of digits.

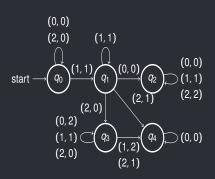
Higher-arity

Instead of one digit at a time, Büchi automata can read tuples of digits.



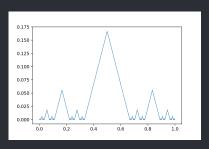
Higher-arity

Instead of one digit at a time, Büchi automata can read tuples of digits.



 $X \subseteq [0,1]^2$ is k-regular if there is a Büchi automaton that accepts the sequence $(d_1^x, d_1^y), (d_2^x, d_2^y), \ldots \iff \exists (x, y) \in X \text{ such that } 0.d_1^x d_2^x \ldots \text{ is the base-} k$ representation of x and $0.d_1^y d_2^y \ldots$ is the base-k representation for y.

Fractals & Automata



Above is the set recognized by the automaton on the previous slide.

This automaton recognizes \mathscr{C} , the Cantor set:

Connection to first order logic

Definition

Let $V_k(x, u, d)$ be a relation on \mathbb{R}^3 that holds precisely if $u = k^{-n}$ for some $n \in \mathbb{N}_{>0}$ and the n^{th} digit of a base-k representation of x is d.

Connection to first order logic

Definition

Let $V_k(x, u, d)$ be a relation on \mathbb{R}^3 that holds precisely if $u = k^{-n}$ for some $n \in \mathbb{N}_{>0}$ and the n^{th} digit of a base-k representation of x is d.

Theorem (Boigelot, Rassart & Wolper, '98)

A subset $X \subseteq [0, 1]^n$ is k-regular iff X is \emptyset -definable in $(\mathbb{R}, <, 0, +, V_k)$.

Corollary

The theory of $(\mathbb{R}, <, 0, +, V_k)$ is decidable.

Entropy

Definition

Given $A \subseteq \Sigma^*$, define the entropy of A as follows:

$$h(A) = \limsup_{n \to \infty} \frac{\log_k |A|_n}{n}$$

where $A \upharpoonright_n$ is the set of length-n elements of A.

Entropy

Definition

Given $A \subseteq \Sigma^*$, define the entropy of A as follows:

$$h(A) = \limsup_{n \to \infty} \frac{\log_k |A|_n}{n}$$

where $A \upharpoonright_n$ is the set of length-n elements of A.

Examples:

- If k = 3, then $h(\{0, 2\}^*) = \log_3(2)$.
- If k = 2, then $h(\{(0*10*1)*0*\}) = 1$.

Hierarchies

For $k \in \mathbb{N}_{>1}$, let $V_k(x, u, d)$ be a function on \mathbb{R}^3 that tells us the n^{th} digit in the base-k representation of $x \in [0, 1]$ is d.

	Decidable?	Geometry?	Every <i>k</i> -automatic set?
(ℝ, <, +)	Yes	o-minimal	No
$(\mathbb{R}, <, +, k^{\mathbb{N}})$	Yes	d-minimal	No
$(\mathbb{R}, <, +, \mathbb{Q}_{(k)})$	Yes	o-min open core	No
???	Yes	tame open core?	No
$(\mathbb{R}, <, +, V_k)$	Yes	No	Yes

Hierarchies

For $k \in \mathbb{N}_{>1}$, let $V_k(x, u, d)$ be a function on \mathbb{R}^3 that tells us the n^{th} digit in the base-k representation of $x \in [0, 1]$ is d.

	Decidable?	Geometry?	Every <i>k</i> -automatic set?	
(ℝ, <, +)	Yes	o-minimal	No	
$(\mathbb{R}, <, +, k^{\mathbb{N}})$	Yes	d-minimal	No	
$(\mathbb{R}, <, +, \mathbb{Q}_{(k)})$	Yes	o-min open core	No	
???	Yes	tame open core?	No	
$(\mathbb{R},<,+,V_k)$	Yes	No	Yes	

On \mathbb{N} , let $V_k(x)$ be the largest power of k that divides x.

	Decidable?	Entropies?	Every k-automatic set?
(ℕ, +)	Yes	{0,1}	No
$(\mathbb{N}, +, k^{\mathbb{N}})$	Yes	{0,1}	No
$(\mathbb{N}, +, V_k)$	Yes	Dense in (0, 1)	Yes

Closed sets & Automata

Say that a trim Büchi automaton \mathscr{A} is closed if every state in \mathscr{A} is accepting.

Let $\overline{\mathscr{A}}$ be the automaton resulting from making every state of \mathscr{A} accepting.

Fact

If \mathscr{A} recognizes $X \subseteq \mathbb{R}^d$, then $\overline{\mathscr{A}}$ recognizes \overline{X} , the topological closure of X.

Closed sets & Automata

Say that a trim Büchi automaton \mathscr{A} is closed if every state in \mathscr{A} is accepting.

Let $\overline{\mathscr{A}}$ be the automaton resulting from making every state of \mathscr{A} accepting.

Fact

If \mathscr{A} recognizes $X \subseteq \mathbb{R}^d$, then $\overline{\mathscr{A}}$ recognizes \overline{X} , the topological closure of X.

Closed sets & Automata

Say that a trim Büchi automaton \mathscr{A} is closed if every state in \mathscr{A} is accepting.

Let $\overline{\mathscr{A}}$ be the automaton resulting from making every state of \mathscr{A} accepting.

Fact

If \mathscr{A} recognizes $X \subseteq \mathbb{R}^d$, then $\overline{\mathscr{A}}$ recognizes \overline{X} , the topological closure of X.

k-sparse languages

We say a set X is k-sparse if X is k-regular and the # of length n prefixes of elements of X grows at most polynomially in n.

Equivalently, $X \subseteq \mathbb{R}^m$ is a finite union of sets whose base-k representations are of the form

$$u_1 v_1^* \ldots u_i v_i^* \ldots u_d v_d^{\omega}$$

where $u_i, v_i \in (\Sigma^m)^*$ for each $i \leq d$, and \bullet is the k-adics point.

Examples:

Non-examples:

$$k^{-\mathbb{N}} = .0*10^{\omega}$$
 The Cantor set $\mathscr{C} = 0.0*0.2$ $\frac{1}{k-1} - k^{-\mathbb{N}} = .1*01^{\omega}$ $\mathbb{D} := \left\{ \frac{m}{2^n} : m < 2^n \right\} = \{0, 1\}^*0^{\omega}$

Definability and $k^{-\mathbb{N}}$

Theorem (van den Dries, '85)

The structure $(\mathbb{R}, <, +, 2^{\mathbb{Z}})$ is decidable and every unary set is a finite union of intervals and discrete sets (d-minimal).

Definability and $k^{-\mathbb{N}}$

Theorem (van den Dries, '85)

The structure (\mathbb{R} , <, +, 2 \mathbb{Z}) is decidable and every unary set is a finite union of intervals and discrete sets (d-minimal).

Theorem (Bell-B. G.)

If $X \subseteq [0, 1]^d$ is k-sparse and infinite, there exists $m \in \mathbb{N}$ such that the structures $(\mathbb{R}, <, +, 0, k^{-m\mathbb{N}})$ and $(\mathbb{R}, <, +, 0, 1, X)$ define the same sets.

Model Theory & Definability

Suppose $X \subseteq [0, 1]$ is k-regular. Let $L_X^{\text{pre}} \subseteq \Sigma^*$ denote the set of all prefixes of base-k representations of elements of X. Call $\emptyset \neq C \subseteq \mathbb{R}$ a Cantor set if it is compact, has no isolated points, and no interior.

Theorem (Bell-B.G.)

If X is a closed k-regular subset of [0, 1] such that $0 < h(L_X^{\text{pre}}) < 1$, then $(\mathbb{R}, <, +, 0, 1, X)$ defines a Cantor set.

Corollary (Bell-B. G.)

If $X \subseteq [0, 1]^d$ is k-regular, closed, and interior-less, either $\mathsf{Def}(\mathbb{R}, <, +, 0, 1, X) = \mathsf{Def}(\mathbb{R}, <, +, 0, k^{-m\mathbb{N}})$ for some $m \in \mathbb{N}$, or $(\mathbb{R}, <, +, 0, 1, X)$ defines a Cantor set.

Open core

Given any topological structure \mathcal{R} , let \mathcal{R} odenote the structure

$$(R,(U)_{U\subseteq \mathscr{O}(\mathscr{R})})$$

where $\mathcal{O}(\mathcal{R})$ is all open definable subsets of R^n for each $n \in \mathbb{N}$, i.e. the predicates U range over the open sets of all arities definable in \mathcal{R} . Call this structure \mathcal{R}° the open core of \mathcal{R} .

Open core

Given any topological structure \mathcal{R} , let \mathcal{R} odenote the structure

$$(R,(U)_{U\subseteq \mathscr{O}(\mathscr{R})})$$

where $\mathcal{O}(\mathcal{R})$ is all open definable subsets of R^n for each $n \in \mathbb{N}$, i.e. the predicates U range over the open sets of all arities definable in \mathcal{R} . Call this structure \mathcal{R}° the open core of \mathcal{R} . Examples:

=xamples:

- \mathscr{R} o-minimal \Longrightarrow $Def(\mathscr{R}^{\,o}) = Def(\mathscr{R})$.
- The open core of $(\mathbb{R}, <, +, \mathbb{Q}_{(k)})$ defines the same sets as $(\mathbb{R}, <, +)$.
- The structure $(\mathbb{R}, <, +, (k^{m\mathbb{Z}})_{m \in \mathbb{N}})$ defines the same sets as its open core.

Hierarchy Revisited

Theorem (Balderrama-B. G.-Farris-Hieronymi-Manthe, 2025+)

For $X \subseteq \mathbb{R}$ a k-regular set, $(\mathbb{R}, <, +, X)^{\circ}$ defines no dense/codense set iff all definable sets in $(\mathbb{R}, <, +, X)^{\circ}$ are also definable in $(\mathbb{R}, <, +, (k^{m\mathbb{Z}})_{m \in \mathbb{N}})$.

Corollary

The open core of $(\mathbb{R}, <, +, \mathbb{Q}_{(k)}, k^{m\mathbb{Z}})_{m \in \mathbb{N}}$ defines the same sets as $(\mathbb{R}, <, +, (k^{m\mathbb{Z}})_{m \in \mathbb{N}})$.

Hierarchy Revisited

With this theorem, can characterize what the possibilities are for the "Geometry" of $(\mathbb{R}, <, +, X)$ for k-regular $X \subseteq \mathbb{R}$:

Reduct	Decidable?	Geometry?	All k-regular sets?
(ℝ, <, +)	Yes	o-minimal	No
$(\mathbb{R}, <, +, k^{\mathbb{N}})$	Yes	d-minimal	No
$(\mathbb{R}, <, +, \mathbb{Q}_{(k)})$	Yes	o-min open core	No
e.g., $(\mathbb{R}, <, +, \mathbb{Q}_{(k)}, k^{\mathbb{Z}})$	Yes	d-min open core	No
$(\mathbb{R}, <, +, V_k)$	Yes	No	Yes