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Automata Terminology
For an alphabet , let ∗ denote all strings  generates.

Call any subset L ⊆ ∗ a language. Say that an automaton A
recognizes L if for all w ∈ ∗, running A on input w ends in an
accept state iff w ∈ L. If L is recognized by some automaton,
call it regular.
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Example: The language this automaton recognizes is

L = 0∗10∗ = {0n10m : n,m ∈ N}.
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Büchi automata

Büchi automata (BA) differ from traditional automata in that
they accept infinite length strings rather than finite length. We
say the automaton accepts a string if it enters an accept state
infinitely often.
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0,1,2

View the input strings for this
automaton as the ternary
representations for points in
[0,1], i.e. if x = d1

1
3 + d2

1
9 +

. . . (with digits d1,d2, . . . ∈
{0,1,2}) then “d1d2 . . .” is
the input.

Say that X ⊆ [0,1] is k -regular if there is a BA that accepts an
input iff the input is a base-k expansion of some x ∈ X .
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Higher-arity

Instead of one digit at a time, Büchi automata can read tuples
of digits.
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X ⊆ [0,1]2 is k-regular if
there is a Büchi automaton
that accepts the sequence
(dx

1 ,d
y
1 ), (dx

2 ,d
y
2 ), . . . ⇐⇒

∃(x , y) ∈ X such that
0.dx

1 dx
2 . . . is the base-k

representation of x and
0.dy

1 dy
2 . . . is the base-k

representation for y .
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Fractals & Automata

Above is the set recognized
by the automaton on the pre-
vious slide.

q0start

0,2

This automaton recognizes
C , the Cantor set:
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Connection to first order logic

Definition

Let Vk (x ,u,d) be a relation on R3 that holds precisely if
u = k−n for some n ∈ N>0 and the nth digit of a base-k
representation of x is d.

Theorem (Boigelot, Rassart & Wolper, ’98)

A subset X ⊆ [0,1]n is k-regular iff X is ;-definable in
(R, <,0,+,Vk ).

Corollary

The theory of (R, <,0,+,Vk ) is decidable.
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Entropy

Definition

Given A ⊆ ∗, define the entropy of A as follows:

h(A) = limsp
n→∞

logk |A ↾n |

n

where A ↾n is the set of length-n elements of A.

Examples:

• If k = 3, then h({0,2}∗) = log3(2).

• If k = 2, then h({(0∗10∗1)∗0∗}) = 1.
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Hierarchies
For k ∈ N>1, let Vk (x ,u,d) be a function on R3 that tells us the nth

digit in the base-k representation of x ∈ [0,1] is d .

Decidable? Geometry? Every k -automatic set?

(R, <,+) Yes o-minimal No
(R, <,+, kN) Yes d-minimal No
(R, <,+,Q(k)) Yes o-min open core No

??? Yes tame open core? No
(R, <,+,Vk ) Yes No Yes

On N, let Vk (x) be the largest power of k that divides x .

Decidable? Entropies? Every k -automatic set?

(N,+) Yes {0,1} No
(N,+, kN) Yes {0,1} No
(N,+,Vk ) Yes Dense in (0,1) Yes
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Closed sets & Automata

Say that a trim Büchi automaton A is closed if every state in
A is accepting.
Let A be the automaton resulting from making every state of
A accepting.

Fact

If A recognizes X ⊆ Rd , then A recognizes X, the
topological closure of X .

q0start q1

0,1

0

0

q0start q1

0,1

0

0

8/14



Closed sets & Automata

Say that a trim Büchi automaton A is closed if every state in
A is accepting.
Let A be the automaton resulting from making every state of
A accepting.

Fact

If A recognizes X ⊆ Rd , then A recognizes X, the
topological closure of X .

q0start q1

0,1

0

0

q0start q1

0,1

0

0

8/14



Closed sets & Automata

Say that a trim Büchi automaton A is closed if every state in
A is accepting.
Let A be the automaton resulting from making every state of
A accepting.

Fact

If A recognizes X ⊆ Rd , then A recognizes X, the
topological closure of X .

q0start q1

0,1

0

0

q0start q1

0,1

0

0

8/14



k -sparse languages

We say a set X is k -sparse if X is k -regular and the # of length
n prefixes of elements of X grows at most polynomially in n.

Equivalently, X ⊆ Rm is a finite union of sets whose base-k
representations are of the form

u1v∗1 . . .• uiv∗i . . .udvω

d

where ui , vi ∈ (m)∗ for each i ≤ d , and • is the k -adics point.

Examples:

k−N = .0∗10ω

1

k − 1
− k−N = .1∗01ω

Non-examples:

The Cantor set C =0•{0,2}ω

D :=
{︁ m

2n
: m < 2n

}︁
={0,1}∗0ω

9/14



Definability and k−N

Theorem (van den Dries, ’85)

The structure (R, <,+,2Z) is decidable and every unary set is
a finite union of intervals and discrete sets (d-minimal).

Theorem (Bell-B. G.)

If X ⊆ [0,1]d is k-sparse and infinite, there exists m ∈ N such
that the structures (R, <,+,0, k−mN) and (R, <,+,0,1,X )
define the same sets.
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Model Theory & Definability

Suppose X ⊆ [0,1] is k -regular. Let Lpre
X ⊆ ∗ denote the set

of all prefixes of base-k representations of elements of X . Call
; ̸= C ⊆ R a Cantor set if it is compact, has no isolated points,
and no interior.

Theorem (Bell-B.G.)

If X is a closed k-regular subset of [0,1] such that
0 < h(Lpre

X ) < 1, then (R, <,+,0,1,X ) defines a Cantor set.

Corollary (Bell-B. G.)

If X ⊆ [0,1]d is k-regular, closed, and interior-less, either
Def(R, <,+,0,1,X ) = Def(R, <,+,0, k−mN) for some m ∈ N,
or (R, <,+,0,1,X ) defines a Cantor set.
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Open core

Given any topological structure R , let R ◦ denote the structure

(R, (U)U⊆O (R ))

where O (R ) is all open definable subsets of Rn for each n ∈ N,
i.e. the predicates U range over the open sets of all arities
definable in R . Call this structure R ◦ the open core of R .

Examples:

• R o-minimal =⇒ Def(R o) = Def(R ).

• The open core of (R, <,+,Q(k)) defines the same sets as
(R, <,+).

• The structure (R, <,+, (kmZ)m∈N) defines the same sets
as its open core.
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Hierarchy Revisited

Theorem (Balderrama-B. G.-Farris-Hieronymi-Manthe, 2025+)

For X ⊆ R a k-regular set, (R, <,+,X )◦ defines no
dense/codense set iff all definable sets in (R, <,+,X )◦ are
also definable in (R, <,+, (kmZ)m∈N).

Corollary

The open core of (R, <,+,Q(k), kmZ)m∈N) defines the same
sets as (R, <,+, (kmZ)m∈N).
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Hierarchy Revisited

With this theorem, can characterize what the possibilities are
for the “Geometry” of (R, <,+,X ) for k -regular X ⊆ R:

Reduct Decidable? Geometry? All k -regular sets?

(R, <,+) Yes o-minimal No
(R, <,+, kN) Yes d-minimal No
(R, <,+,Q(k)) Yes o-min open core No

e.g., (R, <,+,Q(k), kZ) Yes d-min open core No
(R, <,+,Vk ) Yes No Yes
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