Berarducci, Projective curves and weak second-order logic

This is joint work with Francesco Gallinaro.

Given an algebraically closed field \mathbb{K} of characteristic zero, we study the incidence relation between points and irreducible projective curves, or more precisely the poset $\operatorname{Pos}(\mathbb{K})$ of irreducible proper sub-varieties of the projective plane over \mathbb{K} . Answering a question of Marcus Tressl, we prove that the poset interprets the field \mathbb{K} and the subring of integers, and it is in fact bi-interpretable with the two-sorted structure (\mathbb{K} , $\operatorname{Fin}(\mathbb{K})$) consisting of the field \mathbb{K} and a sort for its finite subsets. We prove that the theory of the poset depends on the transcendence degree of \mathbb{K} , so for instance the complex numbers and the algebraic numbers have non-elementary-equivalent posets. Taking for \mathbb{K} the complex numbers, we give a complete recursive axiomatization of (\mathbb{K} , $\operatorname{Fin}(\mathbb{K})$) modulo the theory of the integers. We also show that the integers are stably embedded in this structure.