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Solving unary equations over structures 2/15

Let T be a first-order structure, letM=(M;: : : )�T and let t1(x); t2(x) be unary terms with
parameters in M .

UUUUUUUUUnnnnnnnnnaaaaaaaaarrrrrrrrryyyyyyyyy eeeeeeeeeqqqqqqqqquuuuuuuuuaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn ppppppppprrrrrrrrrooooooooobbbbbbbbbllllllllleeeeeeeeemmmmmmmmm (((((((((UUUUUUUUUEEEEEEEEEPPPPPPPPP))))))))):::::::::

Are there an N =(N; : : : )�T with M�N and an a2N such that

N � t1(a)= t2(a) ?

If T is a theory of pure groups, then this reduces to solving

g1 y
�1 � � � gn y�n=1

in extensions of M that are models of T , where g1; : : : ; gn2M and �1; : : : ; �n2Z.

The term t(y)= g1 y
�1 � � � gn y�n is said regular if �(t) :=�1+ � � �+�n=/ 0.
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Knowns and unknowns 3/15

PPPPPPPPPuuuuuuuuurrrrrrrrreeeeeeeee gggggggggrrrrrrrrrooooooooouuuuuuuuupppppppppsssssssss:::::::::

� If T is the theory of all groups, thenUEP is solvable for t(y)= g1 y
�1 and t(y)= g1 yg2 y

¡1.

� If T is a theory of Abelian groups, then UEP in T reduces to terms t(y)= g y�(t).

� LEVIN conjecture:UEP is solvable in the theory of torsion-free groups (known for �(t)=1).

� KERVAIRE-LAUDENBACH conjecture: UEP is solvable for regular terms in the theory of all
groups.

� For nilpotent or solvable groups: unknown even for regular case.

� BLUDOV, 2005: UEP is not solvable for terms t(y) = g1 y
�1, nor for t(y) = g1 y g2 y

¡1 in
the theory of orderable groups.

EEEEEEEEExxxxxxxxxpppppppppaaaaaaaaannnnnnnnnsssssssssiiiiiiiiiooooooooonnnnnnnnnsssssssss ooooooooofffffffff gggggggggrrrrrrrrrooooooooouuuuuuuuupppppppppsssssssss:::::::::

� Ordered groups: same as for orderable.

� �Exponential groups�: no systematic study of this problem.
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Expansions of groups 4/15

DDDDDDDDDeeeeeeeeefififififififififinnnnnnnnniiiiiiiiitttttttttiiiiiiiiiooooooooonnnnnnnnn::::::::: A group is a group.

NNNNNNNNNoooooooootttttttttaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnnsssssssss::::::::: (G ; �;1); G=/ :=G nf1g; [f ; g] := f¡1 g¡1 fg; C(f) :=fg2G : [f ; g]=1g.

An ordered group is a group (G ; �; 1; <) together with a total ordering < on G with

f < g) (f h< gh^h f <h g)

for all f ; g; h2 G. We write G>= fg 2 G : g > 1g.

Definition: ordered group

Let A be a (unital, associative) ring. An A-group is a group (G ; �;1) together with a function
A�G ¡!G ; (a; g) 7! ga such that for all g; h2 G and a; b2A, we have:

g0=1, g1= g, 1a=1 ga+b= ga gb, (ga)b= gab

(h gh¡1)a=h gah¡1 [g; h] = 1) (g h)a= gaha.

Definition: exponential group (MIASNIKOV&REMESLENNIKOV, 1994)

EEEEEEEEExxxxxxxxxaaaaaaaaammmmmmmmmpppppppppllllllllleeeeeeeeesssssssss::::::::: groups are Z-group in a unique way: (n; g) 7! gn. Divisible groups with unique
roots are Q-groups in a unique way.
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Valuations 5/15

G: group / ordered group / A-group; (¡; <): totally ordered; v : G ¡�¡. Then (G ; v) is:

� valued if for all f ; g; h2 G,

V1. f =/ 1! v(1)<v(f).

V2. v(f g)6max (v(f); v(g)).

V3. v(f)= v(f¡1)

V4. v(f)6 v(g)! v(h fh¡1)6 v(h gh¡1).

� c-valued if it is valued and for all f ; g 2 G,

V5. (g f = f g ^ f =/ 1^ g=/ 1)! v(g)= v(f).

V6. (v(f)= v(g)^ f =/ 1^ g=/ 1)! v([f ; g])<v(f).

� ordered (c-)valued if it is (c-)valued and v is nondecreasing on G>.

� A-valued if it is valued and for all a2A and f ; "2 G,

fa=/ 1) v(fa)= v(f) and v(")<v(f)) v((f ")a f¡a)6 v("):
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Affine bijections 6/15

Let F be a field and let V be a vector space over F . The group AffF(V ) of affine bijections of
V is the group under composition of maps �x+u : v 7!� v+u for �2F� and u2V .

So AffF(V )'F oV for the action of F on V by homoteties.

Valuation v :AffF(V )¡! (f0; 1; 2g; <) with

v(x) = 0
v(x+u) = 1 if u=/ 0

v(�x+u) = 2 if �=/ 1.

This is a c-valuation on AffF(V ).
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Free groups 7/15

Let F be a non-Abelian free group. Let (Fn)n<! and (F (n))n<! denote the lower central
and derived series of F respectively. Then F is c-valued and Z-valued for the maps

` : g 7! sup fn2N : g 2Fng and d : g 7! sup fn2N : g 2F (n)g.

Proposition

Proof (for `). We take the reverse ordering on ¡= !+ 1. V1 holds by definition. V2 and
V3 hold since each Fn is a subgroup. V4 holds because each Fn is normal. V6 holds because
each quotient Fn/Fn+1 is Abelian. �

By work of BAUMSLAG, JAIKIN-ZAPIRAIN and MIASNIKOV&REMESLENNIKOV, this generalises to free
A-groups for commutative domains A of characteristic 0.
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Growth order groups 8/15

A growth order group is an ordered group (G ; �; 1; <) such that

� The map v : G ¡! 2G given by v(f)=ConvexHull of(C(f)) is nondecreasing on G>.

� We have f g > g f for all f ; g 2 G> with v(f)>v(g).

� For all 
 2 v(G=/), there is an f with v(f)= 
 such that C(f) is Abelian and that for all
g 2 G with v(g)= 
, there is an f02C(f) with v(g f0¡1)< 
.

Definition

If F is ordered and V is an ordered vector space, then the subgroup AffF
+(V ) =F>0o V of

strictly increasing affine maps is a growth order group.

If R is a polynomially bounded o-minimal expansion of (R;+; �), then the ordered group under
composition of germs at +1 of R-definable unary functions f with lim f =+1 is a growth
order group.

Theorem

This also works if for each definable map f with lim f =+1 there are an e2Z, n2N with

exp�e¡ 16 log�n � f � exp�n6 exp�e+1:



Growth order groups 8/15

A growth order group is an ordered group (G ; �; 1; <) such that

� The map v : G ¡! 2G given by v(f)=ConvexHull of(C(f)) is nondecreasing on G>.

� We have f g > g f for all f ; g 2 G> with v(f)>v(g).

� For all 
 2 v(G=/), there is an f with v(f)= 
 such that C(f) is Abelian and that for all
g 2 G with v(g)= 
, there is an f02C(f) with v(g f0¡1)< 
.

Definition

If F is ordered and V is an ordered vector space, then the subgroup AffF
+(V ) =F>0o V of

strictly increasing affine maps is a growth order group.

If R is a polynomially bounded o-minimal expansion of (R;+; �), then the ordered group under
composition of germs at +1 of R-definable unary functions f with lim f =+1 is a growth
order group.

Theorem

This also works if for each definable map f with lim f =+1 there are an e2Z, n2N with

exp�e¡ 16 log�n � f � exp�n6 exp�e+1:



Growth order groups 8/15

A growth order group is an ordered group (G ; �; 1; <) such that

� The map v : G ¡! 2G given by v(f)=ConvexHull of(C(f)) is nondecreasing on G>.

� We have f g > g f for all f ; g 2 G> with v(f)>v(g).

� For all 
 2 v(G=/), there is an f with v(f)= 
 such that C(f) is Abelian and that for all
g 2 G with v(g)= 
, there is an f02C(f) with v(g f0¡1)< 
.

Definition

If F is ordered and V is an ordered vector space, then the subgroup AffF
+(V ) =F>0o V of

strictly increasing affine maps is a growth order group.

If R is a polynomially bounded o-minimal expansion of (R;+; �), then the ordered group under
composition of germs at +1 of R-definable unary functions f with lim f =+1 is a growth
order group.

Theorem

This also works if for each definable map f with lim f =+1 there are an e2Z, n2N with

exp�e¡ 16 log�n � f � exp�n6 exp�e+1:



Group theoretic properties 9/15

Let (G ; �; 1; v) be c-valued, let 
 2 v(G=/). Write

G6
= ff 2 G : v(f)6 
g, G<
= ff 2 G : v(f)< 
gC G6
, and C
= G6
/G<
.

Then C
 is Abelian. If G is an A-valued A-group, then C� is an A-module. The union of quotient
maps

F

2v(G=/)

G6
 n G<
¡!
F

2v(G=/)

C
 is denoted res.

Centralisers of non-trivial elements in G are Abelian.

Proposition

If v(G)���q� for an ordinal �, then G is hypoabelian. So G contains no finite simple group.

If v(G)= f
1; : : : ; 
ng; 
1< � � �< 
n, then G is an iterated extension of Abelian groups:

0 ,! C
1'G<
2 ,! G6
2 ,! � � � ,! G6
n= G
# #
C
2 C
n
# #
0 0



Group theoretic properties 9/15

Let (G ; �; 1; v) be c-valued, let 
 2 v(G=/). Write

G6
= ff 2 G : v(f)6 
g, G<
= ff 2 G : v(f)< 
gC G6
, and C
= G6
/G<
.

Then C
 is Abelian. If G is an A-valued A-group, then C� is an A-module. The union of quotient
maps

F

2v(G=/)

G6
 n G<
¡!
F

2v(G=/)

C
 is denoted res.

Centralisers of non-trivial elements in G are Abelian.

Proposition

If v(G)���q� for an ordinal �, then G is hypoabelian. So G contains no finite simple group.

If v(G)= f
1; : : : ; 
ng; 
1< � � �< 
n, then G is an iterated extension of Abelian groups:

0 ,! C
1'G<
2 ,! G6
2 ,! � � � ,! G6
n= G
# #
C
2 C
n
# #
0 0



Group theoretic properties 9/15

Let (G ; �; 1; v) be c-valued, let 
 2 v(G=/). Write

G6
= ff 2 G : v(f)6 
g, G<
= ff 2 G : v(f)< 
gC G6
, and C
= G6
/G<
.

Then C
 is Abelian. If G is an A-valued A-group, then C� is an A-module. The union of quotient
maps

F

2v(G=/)

G6
 n G<
¡!
F

2v(G=/)

C
 is denoted res.

Centralisers of non-trivial elements in G are Abelian.

Proposition

If v(G)���q� for an ordinal �, then G is hypoabelian. So G contains no finite simple group.

If v(G)= f
1; : : : ; 
ng; 
1< � � �< 
n, then G is an iterated extension of Abelian groups:

0 ,! C
1'G<
2 ,! G6
2 ,! � � � ,! G6
n= G
# #
C
2 C
n
# #
0 0



Group theoretic properties 9/15

Let (G ; �; 1; v) be c-valued, let 
 2 v(G=/). Write

G6
= ff 2 G : v(f)6 
g, G<
= ff 2 G : v(f)< 
gC G6
, and C
= G6
/G<
.

Then C
 is Abelian. If G is an A-valued A-group, then C� is an A-module. The union of quotient
maps

F

2v(G=/)

G6
 n G<
¡!
F

2v(G=/)

C
 is denoted res.

Centralisers of non-trivial elements in G are Abelian.

Proposition

If v(G)���q� for an ordinal �, then G is hypoabelian. So G contains no finite simple group.

If v(G)= f
1; : : : ; 
ng; 
1< � � �< 
n, then G is an iterated extension of Abelian groups:

0 ,! C
1'G<
2 ,! G6
2 ,! � � � ,! G6
n= G
# #
C
2 C
n
# #
0 0



Group theoretic properties 9/15

Let (G ; �; 1; v) be c-valued, let 
 2 v(G=/). Write

G6
= ff 2 G : v(f)6 
g, G<
= ff 2 G : v(f)< 
gC G6
, and C
= G6
/G<
.

Then C
 is Abelian. If G is an A-valued A-group, then C� is an A-module. The union of quotient
maps

F

2v(G=/)

G6
 n G<
¡!
F

2v(G=/)

C
 is denoted res.

Centralisers of non-trivial elements in G are Abelian.

Proposition

If v(G)���q� for an ordinal �, then G is hypoabelian. So G contains no finite simple group.

If v(G)= f
1; : : : ; 
ng; 
1< � � �< 
n, then G is an iterated extension of Abelian groups:

0 ,! C
1'G<
2 ,! G6
2 ,! � � � ,! G6
n= G
# #
C
2 C
n
# #
0 0



Spherical completeness 10/15

A valued group is said spherically complete if all decreasing families of valuative balls gG<
 ;
g 2 G ^ 
 2 v(G=/) have non-empty intersection.

Definition

Such valued groups are in particular complete.

� Valued groups (G ; v) with finite value set v(G), e.g. torsion-free nilpotent groups with
lower central, or derived valuation.

� Completions of free groups.

� Contractive hulls with Baker-Campbell-Hausdorff operations.

� The groups of positive infinite transseries / hyperseries.

Examples of spherically complete valued groups

I don't know if a valued group can always be embedded into a spherically complete one.
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Near Abelianness 11/15

A valued group (G ; �; 1; v) is nearly Abelian if v([f ; g])<v(f); v(g) for all f ; g 2 G=/ .
Definition:

EEEEEEEEExxxxxxxxxaaaaaaaaammmmmmmmmpppppppppllllllllleeeeeeeeesssssssss::::::::: free groups with the lower central valuation; groups of contracting derivations; the
growth order group of parabolic germs definable in a polynomially bounded o-minimal expansion

of (R;+; �), i.e. germs of the form id+ � where �

id! 0.

Certain ordered valued groups can be decomposed into nearly Abelian parts.

The group P = fx+ � 2H : ��xg of parabolic hyperseries is an infinite semidirect product

P = o
�2On

P�

whose terms P� are nearly Abelian.

In general, I expect most interesting spherically complete ordered valued groups can be obtained
as direct limits of inverse limits of semidirect products of nearly Abelian ones.
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Results on nearly Abelian exponential groups (I) 12/15

Fix a ring A of characteristic 0, and a nearly Abelian A-valued A-group G. Suppose that G is
A-torsion-free: ga=1) (a=0 or g=1).

A unary term in the (one-sorted) language of A-groups �is� an element of the free product of
A-groups G �AA. We have a unique A-group homomorphism � : G �AA¡!A with � � G=0
and � �A= idA. A term t is said regular if �(t)=/ 0.

For any regular t2 G �AA with t(1)=1 and all f 2 G, we have res(t(f))=�(t) res(f).

Lemma: residue of a regular term

Proof for A=Z. Write t= g1 y
�1 � � � gn y�n, so �(t) = �1+ � � � + �n. Since t(1) = 1, we

can write t= t1 � � � tn where ti := (g1 � � � gi) y�i (g1 � � � gi)¡1. Near Abelianness: 8f ; g 2 G=/ ;
v(f g f¡1 g¡1)< v(g) so res(f g f¡1) = res(g) for all f ; g 2 G. Thus for all f 2 G, we have
res(ti(f))=�i res(f). Since �1+ � � �+�n=/ 0, we have res(t(f))=�(t) res(f). �

Consequence: we can solve t(y)= 1 for regular terms t via iterated approximations (� 2On):
� t�(1)= 1, then the only solution is y=1.

� if t�(1) =/ 1, then repeat by considering the term t�+1 = t�(f� y) where �(t) res(f�) +
res(t(1))= 0 in Cv(t�(1)).

� at limit stages �, take a �pseudo-limit� of (f0 f1 � � � f� � � � )�<�.
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res(t(1))= 0 in Cv(t�(1)).

� at limit stages �, take a �pseudo-limit� of (f0 f1 � � � f� � � � )�<�.
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�(A)= 0, G: nearly Abelian A-valued A-group, G A-torsion-free: ga=1=) (a=0 or g=1).

For any regular t2 G �AA, there is at most one g 2 G with t(g)= 1.

Theorem: unicity of solutions

If G is ordered c-valued and A=Z, then for any regular unary term t(y) over G, the function
f 7! t(f) : G ¡!G is strictly monotonous.

Theorem: strict monotonicity

Suppose that G is spherically complete and each A-module C
 ; 
 2 v(G) is A-divisible. Then
for any regular t2 G �AA, there is a g 2 G with t(g)= 1.

Theorem: existence of solutions

If H is residually A-nilpotent A-torsion free, then any regular t2H�AA has a solution in the
residually A-nilpotent A-torsion free completion H~ (H~ =H if it is A-nilpotent A-torsion-free).

Corollary: extension of an old result of SMEL'KIN (1967)

WWWWWWWWWhhhhhhhhhaaaaaaaaattttttttt'''''''''sssssssss nnnnnnnnneeeeeeeeexxxxxxxxxttttttttt?????????

Spherical completion, divisible extensions of residues, singular equations (commutators, conju-
gacy, . . . ), the case of non-nearly Abelian c-valued groups.
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Let F be a field, �(F ) = 0. Let G be an Abelian ordered group. We have a Hahn series field
F ((G)), with its valuation v :F ((G))�¡!G. A linear map � :F ((G))¡!F ((G)) is contracting
if v(�(s))>v(s) for all s=/ 0.

Let @ :F ((G))¡!F ((G)) be a strongly linear derivation with Ker(@) =F . Then F ((G)) is a
Lie algebra for J�; �K : (f ; g) 7! @(f) g¡ f @(g). Set

Cont(@) := ff 2F ((G)) : f @ is contractingg:

(Cont(@); �; 0; v) is an F-valued, c-valued group for the Baker-Campbell-Hausdorff product

f � g= f + g+ 1
2
Jf ; gK+ 1

12
(Jf ; Jf ; gKK¡ Jg; Jf ; gKK)+ � � �

Theorem

If F is an ordered field, then F ((G)) is ordered.

Cont(@) is a growth order group with valuation ¡v if and only if (F ((G)); v; @) is an H-field.

Proposition
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