Valuations on groups, ordered groups, and exponential groups

BY VINCENT BAGAYOKO (UNIVERSITÉ PARIS CITÉ)

DDG40, Banyuls-sur-Mer, 07-07-2025

Unary equation problem (UEP):

Are there an $\mathcal{N}=(N,\dots) \vDash T$ with $\mathcal{M} \subseteq \mathcal{N}$ and an $a \in N$ such that

$$\mathcal{N} \vDash t_1(a) = t_2(a) ?$$

Unary equation problem (UEP):

Are there an $\mathcal{N}=(N,\dots) \vDash T$ with $\mathcal{M} \subseteq \mathcal{N}$ and an $a \in N$ such that

$$\mathcal{N} \models t_1(a) = t_2(a)$$
 ?

If T is a theory of pure groups, then this reduces to solving

$$g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} = 1$$

in extensions of \mathcal{M} that are models of T, where $g_1, \ldots, g_n \in M$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}$.

Unary equation problem (UEP):

Are there an $\mathcal{N}=(N,\dots) \vDash T$ with $\mathcal{M} \subseteq \mathcal{N}$ and an $a \in N$ such that

$$\mathcal{N} \models t_1(a) = t_2(a)$$
 ?

If T is a theory of pure groups, then this reduces to solving

$$g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} = 1$$

in extensions of \mathcal{M} that are models of T, where $g_1, \ldots, g_n \in M$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}$.

The term $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n}$ is said **regular** if $\alpha(t) := \alpha_1 + \cdots + \alpha_n \neq 0$.

• If T is the theory of all groups, then **UEP** is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.

- If T is the theory of all groups, then **UEP** is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.
- If T is a theory of Abelian groups, then \mathbf{UEP} in T reduces to terms $t(y) = g\,y^{\alpha(t)}$.

- If T is the theory of all groups, then **UEP** is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.
- If T is a theory of Abelian groups, then \mathbf{UEP} in T reduces to terms $t(y) = g\,y^{\alpha(t)}$.
- Levin conjecture: \mathbf{UEP} is solvable in the theory of torsion-free groups (known for $\alpha(t)=1$).

- If T is the theory of all groups, then \mathbf{UEP} is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.
- If T is a theory of Abelian groups, then **UEP** in T reduces to terms $t(y) = g y^{\alpha(t)}$.
- LEVIN conjecture: **UEP** is solvable in the theory of torsion-free groups (known for $\alpha(t) = 1$).
- Kervaire-Laudenbach conjecture: UEP is solvable for regular terms in the theory of all groups.

- If T is the theory of all groups, then **UEP** is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.
- If T is a theory of Abelian groups, then \mathbf{UEP} in T reduces to terms $t(y) = g\,y^{\alpha(t)}$.
- Levin conjecture: **UEP** is solvable in the theory of torsion-free groups (known for $\alpha(t) = 1$).
- Kervaire-Laudenbach conjecture: \mathbf{UEP} is solvable for regular terms in the theory of all groups.
- For nilpotent or solvable groups: unknown even for regular case.

- If T is the theory of all groups, then **UEP** is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.
- If T is a theory of Abelian groups, then \mathbf{UEP} in T reduces to terms $t(y) = g\,y^{\alpha(t)}$.
- LEVIN conjecture: **UEP** is solvable in the theory of torsion-free groups (known for $\alpha(t) = 1$).
- ullet Kervaire-Laudenbach conjecture: ${f UEP}$ is solvable for regular terms in the theory of all groups.
- For nilpotent or solvable groups: unknown even for regular case.
- BLUDOV, 2005: **UEP** is *not* solvable for terms $t(y) = g_1 y^{\alpha_1}$, nor for $t(y) = g_1 y g_2 y^{-1}$ in the theory of orderable groups.

- If T is the theory of all groups, then **UEP** is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.
- If T is a theory of Abelian groups, then \mathbf{UEP} in T reduces to terms $t(y) = g\,y^{\alpha(t)}$.
- LEVIN conjecture: **UEP** is solvable in the theory of torsion-free groups (known for $\alpha(t) = 1$).
- ullet Kervaire-Laudenbach conjecture: ${f UEP}$ is solvable for regular terms in the theory of all groups.
- For nilpotent or solvable groups: unknown even for regular case.
- BLUDOV, 2005: **UEP** is *not* solvable for terms $t(y) = g_1 y^{\alpha_1}$, nor for $t(y) = g_1 y g_2 y^{-1}$ in the theory of orderable groups.

Expansions of groups:

- If T is the theory of all groups, then \mathbf{UEP} is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.
- If T is a theory of Abelian groups, then **UEP** in T reduces to terms $t(y) = g y^{\alpha(t)}$.
- LEVIN conjecture: **UEP** is solvable in the theory of torsion-free groups (known for $\alpha(t) = 1$).
- ullet Kervaire-Laudenbach conjecture: ${f UEP}$ is solvable for regular terms in the theory of all groups.
- For nilpotent or solvable groups: unknown even for regular case.
- BLUDOV, 2005: **UEP** is *not* solvable for terms $t(y) = g_1 y^{\alpha_1}$, nor for $t(y) = g_1 y g_2 y^{-1}$ in the theory of orderable groups.

Expansions of groups:

Ordered groups: same as for orderable.

- If T is the theory of all groups, then **UEP** is solvable for $t(y) = g_1 y^{\alpha_1}$ and $t(y) = g_1 y g_2 y^{-1}$.
- If T is a theory of Abelian groups, then **UEP** in T reduces to terms $t(y) = g y^{\alpha(t)}$.
- LEVIN conjecture: **UEP** is solvable in the theory of torsion-free groups (known for $\alpha(t) = 1$).
- Kervaire-Laudenbach conjecture: UEP is solvable for regular terms in the theory of all groups.
- For nilpotent or solvable groups: unknown even for regular case.
- BLUDOV, 2005: **UEP** is *not* solvable for terms $t(y) = g_1 y^{\alpha_1}$, nor for $t(y) = g_1 y g_2 y^{-1}$ in the theory of orderable groups.

Expansions of groups:

- Ordered groups: same as for orderable.
- "Exponential groups": no systematic study of this problem.

Definition: A **group** is a group.

 $\textbf{Notations:} \ (\mathcal{G},\cdot,1); \quad \mathcal{G}^{\neq} := \mathcal{G} \setminus \{1\}; \quad [f,g] := f^{-1} \ g^{-1} \ fg; \quad \mathcal{C}(f) := \{g \in \mathcal{G} : [f,g] = 1\}.$

Definition: A **group** is a group.

 $\textbf{Notations:} \ (\mathcal{G},\cdot,1); \quad \mathcal{G}^{\neq} := \mathcal{G} \setminus \{1\}; \quad [f,g] := f^{-1} \, g^{-1} \, fg; \quad \mathcal{C}(f) := \{g \in \mathcal{G} : [f,g] = 1\}.$

Definition: ordered group

An ordered group is a group $(\mathcal{G}, \cdot, 1, <)$ together with a <u>total</u> ordering < on \mathcal{G} with

$$f < g \Rightarrow (fh < gh \land hf < hg)$$

for all $f, g, h \in \mathcal{G}$. We write $\mathcal{G}^{>} = \{g \in \mathcal{G} : g > 1\}$.

Definition: A **group** is a group.

 $\textbf{Notations:} \ (\mathcal{G},\cdot,1); \quad \mathcal{G}^{\neq} := \mathcal{G} \setminus \{1\}; \quad [f,g] := f^{-1} \, g^{-1} \, fg; \quad \mathcal{C}(f) := \{g \in \mathcal{G} : [f,g] = 1\}.$

Definition: ordered group

An ordered group is a group $(\mathcal{G}, \cdot, 1, <)$ together with a <u>total</u> ordering < on \mathcal{G} with

$$f < g \Rightarrow (fh < gh \land hf < hg)$$

for all $f, g, h \in \mathcal{G}$. We write $\mathcal{G}^{>} = \{g \in \mathcal{G} : g > 1\}$.

Definition: exponential group (MIASNIKOV&REMESLENNIKOV, 1994)

Let A be a (unital, associative) ring. An A-group is a group $(\mathcal{G}, \cdot, 1)$ together with a function $A \times \mathcal{G} \longrightarrow \mathcal{G}$; $(a, g) \mapsto g^a$ such that for all $g, h \in \mathcal{G}$ and $a, b \in A$, we have:

$g^0 = 1$, $g^1 = g$, $1^a = 1$	$g^{a+b} = g^a g^b$, $(g^a)^b = g^{ab}$
$(h g h^{-1})^a = h g^a h^{-1}$	$[g,h] = 1 \Rightarrow (gh)^a = g^a h^a.$

Examples: groups are \mathbb{Z} -group in a unique way: $(n,g) \mapsto g^n$. Divisible groups with unique roots are \mathbb{Q} -groups in a unique way.

• valued if for all $f, g, h \in \mathcal{G}$,

V1.
$$f \neq 1 \rightarrow v(1) < v(f)$$
.

V2.
$$v(fg) \le \max(v(f), v(g))$$
.

V3.
$$v(f) = v(f^{-1})$$

V4.
$$v(f) \le v(g) \to v(h f h^{-1}) \le v(h g h^{-1})$$
.

• valued if for all $f, g, h \in \mathcal{G}$,

V1.
$$f \neq 1 \rightarrow v(1) < v(f)$$
.

V2.
$$v(fg) \le \max(v(f), v(g))$$
.

V3.
$$v(f) = v(f^{-1})$$

V4.
$$v(f) \le v(g) \to v(h f h^{-1}) \le v(h g h^{-1})$$
.

• c-valued if it is valued and for all $f, g \in \mathcal{G}$,

V5.
$$(g f = f g \land f \neq 1 \land g \neq 1) \rightarrow v(g) = v(f).$$

V6.
$$(v(f) = v(g) \land f \neq 1 \land g \neq 1) \rightarrow v([f, g]) < v(f).$$

• valued if for all $f, g, h \in \mathcal{G}$,

V1.
$$f \neq 1 \rightarrow v(1) < v(f)$$
.

V2.
$$v(fg) \le \max(v(f), v(g))$$
.

V3.
$$v(f) = v(f^{-1})$$

V4.
$$v(f) \le v(g) \to v(h f h^{-1}) \le v(h g h^{-1})$$
.

• **c-valued** if it is valued and for all $f, g \in \mathcal{G}$,

V5.
$$(g f = f g \land f \neq 1 \land g \neq 1) \rightarrow v(g) = v(f)$$
.

V6.
$$(v(f) = v(g) \land f \neq 1 \land g \neq 1) \rightarrow v([f, g]) < v(f).$$

• ordered (c-)valued if it is (c-)valued and v is nondecreasing on $\mathcal{G}^>$.

- valued if for all $f, g, h \in \mathcal{G}$,
 - **V1.** $f \neq 1 \rightarrow v(1) < v(f)$.
 - **V2.** $v(fg) \le \max(v(f), v(g))$.
 - **V3.** $v(f) = v(f^{-1})$
 - **V4.** $v(f) \le v(g) \to v(h f h^{-1}) \le v(h g h^{-1})$.
- **c-valued** if it is valued and for all $f, g \in \mathcal{G}$,

V5.
$$(g f = f g \land f \neq 1 \land g \neq 1) \rightarrow v(g) = v(f)$$
.

V6.
$$(v(f) = v(g) \land f \neq 1 \land g \neq 1) \rightarrow v([f, g]) < v(f).$$

- ordered (c-)valued if it is (c-)valued and v is nondecreasing on $\mathcal{G}^>$.
- A-valued if it is valued and for all $a \in A$ and $f, \varepsilon \in \mathcal{G}$,

$$f^a \neq 1 \Rightarrow v(f^a) = v(f) \qquad \text{and} \qquad v(\varepsilon) < v(f) \Rightarrow v((f\varepsilon)^a f^{-a}) \leqslant v(\varepsilon).$$

Let F be a field and let V be a vector space over F. The group $\mathrm{Aff}_F(V)$ of affine bijections of V is the group under composition of maps $\lambda\,x+u:v\mapsto\lambda\,v+u$ for $\lambda\in F^\times$ and $u\in V$.

Let F be a field and let V be a vector space over F. The group $\mathrm{Aff}_F(V)$ of affine bijections of V is the group under composition of maps $\lambda\,x+u:v\mapsto\lambda\,v+u$ for $\lambda\in F^\times$ and $u\in V$.

So $\mathrm{Aff}_F(V) \simeq F \rtimes V$ for the action of F on V by homoteties.

Let F be a field and let V be a vector space over F. The group $\mathrm{Aff}_F(V)$ of affine bijections of V is the group under composition of maps $\lambda\,x + u : v \mapsto \lambda\,v + u$ for $\lambda \in F^\times$ and $u \in V$.

So $\mathrm{Aff}_F(V) \simeq F \rtimes V$ for the action of F on V by homoteties.

Valuation $v: Aff_F(V) \longrightarrow (\{0,1,2\},<)$ with

$$v(x) = 0$$

$$v(x+u) = 1 \text{ if } u \neq 0$$

$$v(\lambda x + u) = 2 \text{ if } \lambda \neq 1.$$

Let F be a field and let V be a vector space over F. The group $\mathrm{Aff}_F(V)$ of affine bijections of V is the group under composition of maps $\lambda\,x + u : v \mapsto \lambda\,v + u$ for $\lambda \in F^\times$ and $u \in V$.

So $\mathrm{Aff}_F(V) \simeq F \rtimes V$ for the action of F on V by homoteties.

Valuation $v: Aff_F(V) \longrightarrow (\{0,1,2\},<)$ with

$$v(x) = 0$$

$$v(x+u) = 1 \text{ if } u \neq 0$$

$$v(\lambda x + u) = 2 \text{ if } \lambda \neq 1.$$

This is a c-valuation on $Aff_F(V)$.

Let $\mathcal F$ be a non-Abelian free group. Let $(\mathcal F_n)_{n<\omega}$ and $(\mathcal F^{(n)})_{n<\omega}$ denote the lower central and derived series of $\mathcal F$ respectively. Then $\mathcal F$ is c-valued and $\mathbb Z$ -valued for the maps

$$\ell: g \mapsto \sup \{n \in \mathbb{N}: g \in \mathcal{F}_n\}$$

and

$$d: g \mapsto \sup \{n \in \mathbb{N} : g \in \mathcal{F}^{(n)}\}.$$

Let \mathcal{F} be a non-Abelian free group. Let $(\mathcal{F}_n)_{n<\omega}$ and $(\mathcal{F}^{(n)})_{n<\omega}$ denote the lower central and derived series of \mathcal{F} respectively. Then \mathcal{F} is c-valued and \mathbb{Z} -valued for the maps

$$\ell: g \mapsto \sup \{n \in \mathbb{N}: g \in \mathcal{F}_n\}$$
 and $d: g \mapsto \sup \{n \in \mathbb{N}: g \in \mathcal{F}^{(n)}\}.$

Proof (for ℓ). We take the reverse ordering on $\Gamma = \omega + 1$. **V1** holds by definition. **V2** and **V3** hold since each \mathcal{F}_n is a subgroup. **V4** holds because each \mathcal{F}_n is normal. **V6** holds because each quotient $\mathcal{F}_n/\mathcal{F}_{n+1}$ is Abelian.

Let \mathcal{F} be a non-Abelian free group. Let $(\mathcal{F}_n)_{n<\omega}$ and $(\mathcal{F}^{(n)})_{n<\omega}$ denote the lower central and derived series of \mathcal{F} respectively. Then \mathcal{F} is c-valued and \mathbb{Z} -valued for the maps

$$\ell: g \mapsto \sup \{n \in \mathbb{N} : g \in \mathcal{F}_n\}$$
 and $d: g \mapsto \sup \{n \in \mathbb{N} : g \in \mathcal{F}^{(n)}\}.$

Proof (for ℓ). We take the reverse ordering on $\Gamma = \omega + 1$. **V1** holds by definition. **V2** and **V3** hold since each \mathcal{F}_n is a subgroup. **V4** holds because each \mathcal{F}_n is normal. **V6** holds by definition.

Now consider $\mathbf{V5}$. Let $f,g\in\mathcal{F}^{\neq}$ with $g\in\mathcal{C}(f)$. We have $\mathcal{C}(f)=s^{\mathbb{Z}}$ for a certain $s\in\mathcal{C}(f)$. So it suffices to show that $v(s^m)=v(s)$ for all $s\in\mathcal{F}^{\neq}$ and $m\in\mathbb{Z}\setminus\{0\}$. Note that $\mathcal{F}_{v(s)}$ is a free group. Assume for contradiction that $s^m\in\mathcal{F}_{v(s)+1}$. Then $(s\,\mathcal{F}_{v(s)+1})^m=1$ in the free Abelian group $\mathcal{F}_{v(s)}/\mathcal{F}_{v(s)+1}$. It follows that $s\in\mathcal{F}_{v(s)+1}$: a contradiction. Thus $\mathbf{V5}$ holds and \mathcal{F} is c-valued. This plus normality of each \mathcal{F}_n in \mathcal{F} implies it is \mathbb{Z} -valued.

Let \mathcal{F} be a non-Abelian free group. Let $(\mathcal{F}_n)_{n<\omega}$ and $(\mathcal{F}^{(n)})_{n<\omega}$ denote the lower central and derived series of \mathcal{F} respectively. Then \mathcal{F} is c-valued and \mathbb{Z} -valued for the maps

$$\ell: g \mapsto \sup \{n \in \mathbb{N} : g \in \mathcal{F}_n\}$$
 and $d: g \mapsto \sup \{n \in \mathbb{N} : g \in \mathcal{F}^{(n)}\}.$

Proof (for ℓ). We take the reverse ordering on $\Gamma = \omega + 1$. **V1** holds by definition. **V2** and **V3** hold since each \mathcal{F}_n is a subgroup. **V4** holds because each \mathcal{F}_n is normal. **V6** holds by definition.

Now consider $\mathbf{V5}$. Let $f,g\in\mathcal{F}^{\neq}$ with $g\in\mathcal{C}(f)$. We have $\mathcal{C}(f)=s^{\mathbb{Z}}$ for a certain $s\in\mathcal{C}(f)$. So it suffices to show that $v(s^m)=v(s)$ for all $s\in\mathcal{F}^{\neq}$ and $m\in\mathbb{Z}\setminus\{0\}$. Note that $\mathcal{F}_{v(s)}$ is a free group. Assume for contradiction that $s^m\in\mathcal{F}_{v(s)+1}$. Then $(s\,\mathcal{F}_{v(s)+1})^m=1$ in the free Abelian group $\mathcal{F}_{v(s)}/\mathcal{F}_{v(s)+1}$. It follows that $s\in\mathcal{F}_{v(s)+1}$: a contradiction. Thus $\mathbf{V5}$ holds and \mathcal{F} is c-valued. This plus normality of each \mathcal{F}_n in \mathcal{F} implies it is \mathbb{Z} -valued.

By work of Baumslag, Jaikin-Zapirain and Miasnikov&Remeslennikov, this generalises to free A-groups for commutative domains A of characteristic 0.

Definition

A growth order group is an ordered group $(\mathcal{G},\cdot,1,<)$ such that

- The map $v: \mathcal{G} \longrightarrow 2^{\mathcal{G}}$ given by $v(f) = \operatorname{Convex} \operatorname{Hull} \operatorname{of}(\mathcal{C}(f))$ is nondecreasing on $\mathcal{G}^{>}$.
- We have fg > gf for all $f, g \in \mathcal{G}^{>}$ with v(f) > v(g).
- For all $\gamma \in v(\mathcal{G}^{\neq})$, there is an f with $v(f) = \gamma$ such that $\mathcal{C}(f)$ is Abelian and that for all $g \in \mathcal{G}$ with $v(g) = \gamma$, there is an $f_0 \in \mathcal{C}(f)$ with $v(g f_0^{-1}) < \gamma$.

Definition

A growth order group is an ordered group $(\mathcal{G},\cdot,1,<)$ such that

- The map $v: \mathcal{G} \longrightarrow 2^{\mathcal{G}}$ given by $v(f) = \operatorname{Convex} \operatorname{Hull} \operatorname{of}(\mathcal{C}(f))$ is nondecreasing on $\mathcal{G}^{>}$.
- We have fg > gf for all $f, g \in \mathcal{G}^{>}$ with v(f) > v(g).
- For all $\gamma \in v(\mathcal{G}^{\neq})$, there is an f with $v(f) = \gamma$ such that $\mathcal{C}(f)$ is Abelian and that for all $g \in \mathcal{G}$ with $v(g) = \gamma$, there is an $f_0 \in \mathcal{C}(f)$ with $v(g f_0^{-1}) < \gamma$.

If F is ordered and V is an ordered vector space, then the subgroup $\mathrm{Aff}_F^+(V) = F^{>0} \rtimes V$ of strictly increasing affine maps is a growth order group.

Definition

A growth order group is an ordered group $(\mathcal{G}, \cdot, 1, <)$ such that

- The map $v: \mathcal{G} \longrightarrow 2^{\mathcal{G}}$ given by $v(f) = \operatorname{Convex} \operatorname{Hull} \operatorname{of}(\mathcal{C}(f))$ is nondecreasing on $\mathcal{G}^{>}$.
- We have fg > gf for all $f, g \in \mathcal{G}^{>}$ with v(f) > v(g).
- For all $\gamma \in v(\mathcal{G}^{\neq})$, there is an f with $v(f) = \gamma$ such that $\mathcal{C}(f)$ is Abelian and that for all $g \in \mathcal{G}$ with $v(g) = \gamma$, there is an $f_0 \in \mathcal{C}(f)$ with $v(g f_0^{-1}) < \gamma$.

If F is ordered and V is an ordered vector space, then the subgroup $\operatorname{Aff}_F^+(V) = F^{>0} \rtimes V$ of strictly increasing affine maps is a growth order group.

Theorem

If $\mathcal R$ is a polynomially bounded o-minimal expansion of $(\mathbb R,+,\cdot)$, then the ordered group under composition of germs at $+\infty$ of $\mathcal R$ -definable unary functions f with $\lim f = +\infty$ is a growth order group.

This also works if for each definable map f with $\lim f = +\infty$ there are an $e \in \mathbb{Z}$, $n \in \mathbb{N}$ with

$$\exp^{\circ e} - 1 \leq \log^{\circ n} \circ f \circ \exp^{\circ n} \leq \exp^{\circ e} + 1.$$

Let $(\mathcal{G}, \cdot, 1, v)$ be c-valued, let $\gamma \in v(\mathcal{G}^{\neq})$. Write

$$\mathcal{G}_{\leqslant \gamma} = \{ f \in \mathcal{G} : v(f) \leqslant \gamma \}, \qquad \mathcal{G}_{<\gamma} = \{ f \in \mathcal{G} : v(f) < \gamma \} \lhd \mathcal{G}_{\leqslant \gamma}, \qquad \text{and} \qquad \mathcal{C}_{\gamma} = \mathcal{G}_{\leqslant \gamma} / \mathcal{G}_{<\gamma}.$$

Let $(\mathcal{G}, \cdot, 1, v)$ be c-valued, let $\gamma \in v(\mathcal{G}^{\neq})$. Write

$$\mathcal{G}_{\leqslant \gamma} = \{ f \in \mathcal{G} : v(f) \leqslant \gamma \}, \qquad \mathcal{G}_{<\gamma} = \{ f \in \mathcal{G} : v(f) < \gamma \} \lhd \mathcal{G}_{\leqslant \gamma}, \qquad \text{and} \qquad \mathcal{C}_{\gamma} = \mathcal{G}_{\leqslant \gamma} / \mathcal{G}_{<\gamma}.$$

Then \mathcal{C}_{γ} is Abelian. If \mathcal{G} is an A-valued A-group, then \mathcal{C}_{ρ} is an A-module. The union of quotient maps $\bigsqcup_{\gamma \in v(\mathcal{G}^{\neq})} \mathcal{G}_{\leqslant \gamma} \setminus \mathcal{G}_{<\gamma} \longrightarrow \bigsqcup_{\gamma \in v(\mathcal{G}^{\neq})} \mathcal{C}_{\gamma}$ is denoted res.

Let $(\mathcal{G}, \cdot, 1, v)$ be c-valued, let $\gamma \in v(\mathcal{G}^{\neq})$. Write

$$\mathcal{G}_{\leqslant \gamma} = \{ f \in \mathcal{G} : v(f) \leqslant \gamma \}, \qquad \mathcal{G}_{<\gamma} = \{ f \in \mathcal{G} : v(f) < \gamma \} \lhd \mathcal{G}_{\leqslant \gamma}, \qquad \text{and} \qquad \mathcal{C}_{\gamma} = \mathcal{G}_{\leqslant \gamma} / \mathcal{G}_{<\gamma}.$$

Then C_{γ} is Abelian. If \mathcal{G} is an A-valued A-group, then C_{ρ} is an A-module. The union of quotient maps $\bigsqcup_{\gamma \in v(\mathcal{G}^{\neq})} \mathcal{G}_{\leq \gamma} \setminus \mathcal{G}_{<\gamma} \longrightarrow \bigsqcup_{\gamma \in v(\mathcal{G}^{\neq})} \mathcal{C}_{\gamma}$ is denoted res.

Proposition

Centralisers of non-trivial elements in G are Abelian.

Let $(\mathcal{G}, \cdot, 1, v)$ be c-valued, let $\gamma \in v(\mathcal{G}^{\neq})$. Write

$$\mathcal{G}_{\leqslant \gamma} = \{ f \in \mathcal{G} : v(f) \leqslant \gamma \}, \qquad \mathcal{G}_{<\gamma} = \{ f \in \mathcal{G} : v(f) < \gamma \} \lhd \mathcal{G}_{\leqslant \gamma}, \qquad \text{and} \qquad \mathcal{C}_{\gamma} = \mathcal{G}_{\leqslant \gamma} / \mathcal{G}_{<\gamma}.$$

Then C_{γ} is Abelian. If \mathcal{G} is an A-valued A-group, then C_{ρ} is an A-module. The union of quotient maps $\bigsqcup_{\gamma \in v(\mathcal{G}^{\neq})} \mathcal{G}_{\leqslant \gamma} \setminus \mathcal{G}_{<\gamma} \longrightarrow \bigsqcup_{\gamma \in v(\mathcal{G}^{\neq})} \mathcal{C}_{\gamma}$ is denoted res.

Proposition

Centralisers of non-trivial elements in G are Abelian.

If $v(\mathcal{G}) \subseteq \lambda^* \coprod \lambda$ for an ordinal λ , then \mathcal{G} is hypoabelian. So \mathcal{G} contains no finite simple group.

Let $(\mathcal{G}, \cdot, 1, v)$ be c-valued, let $\gamma \in v(\mathcal{G}^{\neq})$. Write

$$\mathcal{G}_{\leqslant \gamma} = \{ f \in \mathcal{G} : v(f) \leqslant \gamma \}, \qquad \mathcal{G}_{<\gamma} = \{ f \in \mathcal{G} : v(f) < \gamma \} \lhd \mathcal{G}_{\leqslant \gamma}, \qquad \text{and} \qquad \mathcal{C}_{\gamma} = \mathcal{G}_{\leqslant \gamma} / \mathcal{G}_{<\gamma}.$$

Then C_{γ} is Abelian. If \mathcal{G} is an A-valued A-group, then C_{ρ} is an A-module. The union of quotient maps $\bigsqcup_{\gamma \in v(\mathcal{G}^{\neq})} \mathcal{G}_{\leqslant \gamma} \setminus \mathcal{G}_{<\gamma} \longrightarrow \bigsqcup_{\gamma \in v(\mathcal{G}^{\neq})} \mathcal{C}_{\gamma}$ is denoted res.

Proposition

Centralisers of non-trivial elements in G are Abelian.

If $v(\mathcal{G}) \subseteq \lambda^* \coprod \lambda$ for an ordinal λ , then \mathcal{G} is hypoabelian. So \mathcal{G} contains no finite simple group.

If $v(\mathcal{G}) = \{\gamma_1, \dots, \gamma_n\}, \gamma_1 < \dots < \gamma_n$, then \mathcal{G} is an iterated extension of Abelian groups:

Definition

A valued group is said spherically complete if all decreasing families of valuative balls $g\mathcal{G}_{<\gamma}$, $g\in\mathcal{G}\wedge\gamma\in v(\mathcal{G}^{\neq})$ have non-empty intersection.

Definition

A valued group is said spherically complete if all decreasing families of valuative balls $g\mathcal{G}_{<\gamma}$, $g\in\mathcal{G}\wedge\gamma\in v(\mathcal{G}^{\neq})$ have non-empty intersection.

Such valued groups are in particular complete.

Definition

A valued group is said spherically complete if all decreasing families of valuative balls $g\mathcal{G}_{<\gamma}$, $g \in \mathcal{G} \land \gamma \in v(\mathcal{G}^{\neq})$ have non-empty intersection.

Such valued groups are in particular complete.

Examples of spherically complete valued groups

- Valued groups (\mathcal{G}, v) with finite value set $v(\mathcal{G})$, e.g. torsion-free nilpotent groups with lower central, or derived valuation.
- Completions of free groups.
- Contractive hulls with Baker-Campbell-Hausdorff operations.
- The groups of positive infinite transseries / hyperseries.

Definition

A valued group is said spherically complete if all decreasing families of valuative balls $g\mathcal{G}_{<\gamma}$, $g \in \mathcal{G} \land \gamma \in v(\mathcal{G}^{\neq})$ have non-empty intersection.

Such valued groups are in particular complete.

Examples of spherically complete valued groups

- Valued groups (\mathcal{G}, v) with finite value set $v(\mathcal{G})$, e.g. torsion-free nilpotent groups with lower central, or derived valuation.
- Completions of free groups.
- Contractive hulls with Baker-Campbell-Hausdorff operations.
- The groups of positive infinite transseries / hyperseries.

I don't know if a valued group can always be embedded into a spherically complete one.

A valued group $(\mathcal{G},\cdot,1,v)$ is nearly Abelian if v([f,g]) < v(f),v(g) for all $f,g \in \mathcal{G}^{\neq}$.

A valued group $(\mathcal{G}, \cdot, 1, v)$ is nearly Abelian if v([f, g]) < v(f), v(g) for all $f, g \in \mathcal{G}^{\neq}$.

Examples: free groups with the lower central valuation; groups of contracting derivations; the growth order group of *parabolic* germs definable in a polynomially bounded o-minimal expansion of $(\mathbb{R},+,\cdot)$, i.e. germs of the form $\mathrm{id}+\delta$ where $\frac{\delta}{\mathrm{id}}\to 0$.

A valued group $(\mathcal{G}, \cdot, 1, v)$ is nearly Abelian if v([f, g]) < v(f), v(g) for all $f, g \in \mathcal{G}^{\neq}$.

Examples: free groups with the lower central valuation; groups of contracting derivations; the growth order group of *parabolic* germs definable in a polynomially bounded o-minimal expansion of $(\mathbb{R},+,\cdot)$, i.e. germs of the form $\mathrm{id}+\delta$ where $\frac{\delta}{\mathrm{id}}\to 0$.

Certain ordered valued groups can be decomposed into nearly Abelian parts.

A valued group $(\mathcal{G}, \cdot, 1, v)$ is nearly Abelian if v([f, g]) < v(f), v(g) for all $f, g \in \mathcal{G}^{\neq}$.

Examples: free groups with the lower central valuation; groups of contracting derivations; the growth order group of *parabolic* germs definable in a polynomially bounded o-minimal expansion of $(\mathbb{R},+,\cdot)$, i.e. germs of the form $\mathrm{id}+\delta$ where $\frac{\delta}{\mathrm{id}}\to 0$.

Certain ordered valued groups can be decomposed into nearly Abelian parts.

The group $\mathcal{P} = \{x + \delta \in \mathbb{H} : \delta \prec x\}$ of parabolic hyperseries is an infinite semidirect product

$$\mathcal{P} = \underset{\alpha \in \mathbf{On}}{\boxtimes} \mathcal{P}_{\alpha}$$

whose terms \mathcal{P}_{α} are nearly Abelian.

A valued group $(\mathcal{G}, \cdot, 1, v)$ is nearly Abelian if v([f, g]) < v(f), v(g) for all $f, g \in \mathcal{G}^{\neq}$.

Examples: free groups with the lower central valuation; groups of contracting derivations; the growth order group of *parabolic* germs definable in a polynomially bounded o-minimal expansion of $(\mathbb{R},+,\cdot)$, i.e. germs of the form $\mathrm{id}+\delta$ where $\frac{\delta}{\mathrm{id}}\to 0$.

Certain ordered valued groups can be decomposed into nearly Abelian parts.

The group $\mathcal{P} = \{x + \delta \in \mathbb{H} : \delta \prec x\}$ of parabolic hyperseries is an infinite semidirect product

$$\mathcal{P} = \underset{\alpha \in \mathbf{On}}{\boxtimes} \mathcal{P}_{\alpha}$$

whose terms \mathcal{P}_{α} are nearly Abelian.

In general, I expect most interesting spherically complete ordered valued groups can be obtained as direct limits of inverse limits of semidirect products of nearly Abelian ones.

A unary term in the (one-sorted) language of A-groups "is" an element of the free product of A-groups $\mathcal{G} *^A A$. We have a unique A-group homomorphism $\alpha : \mathcal{G} *^A A \longrightarrow A$ with $\alpha \upharpoonright \mathcal{G} = 0$ and $\alpha \upharpoonright A = \mathrm{id}_A$. A term t is said *regular* if $\alpha(t) \neq 0$.

A unary term in the (one-sorted) language of A-groups "is" an element of the free product of A-groups $\mathcal{G} *^A A$. We have a unique A-group homomorphism $\alpha : \mathcal{G} *^A A \longrightarrow A$ with $\alpha \upharpoonright \mathcal{G} = 0$ and $\alpha \upharpoonright A = \mathrm{id}_A$. A term t is said $\operatorname{regular}$ if $\alpha(t) \neq 0$.

Lemma: residue of a regular term

For any regular $t \in \mathcal{G} *^A A$ with t(1) = 1 and all $f \in \mathcal{G}$, we have $res(t(f)) = \alpha(t) res(f)$.

A unary term in the (one-sorted) language of A-groups "is" an element of the free product of A-groups $\mathcal{G} *^A A$. We have a unique A-group homomorphism $\alpha : \mathcal{G} *^A A \longrightarrow A$ with $\alpha \upharpoonright \mathcal{G} = 0$ and $\alpha \upharpoonright A = \mathrm{id}_A$. A term t is said $\operatorname{regular}$ if $\alpha(t) \neq 0$.

Lemma: residue of a regular term

For any regular $t \in \mathcal{G} *^A A$ with t(1) = 1 and all $f \in \mathcal{G}$, we have $res(t(f)) = \alpha(t) res(f)$.

Proof for $A = \mathbb{Z}$. Write $t = g_1 \ y^{\alpha_1} \cdots g_n \ y^{\alpha_n}$, so $\alpha(t) = \alpha_1 + \cdots + \alpha_n$. Since t(1) = 1, we can write $t = t_1 \cdots t_n$ where $t_i := (g_1 \cdots g_i) \ y^{\alpha_i} \ (g_1 \cdots g_i)^{-1}$. Near Abelianness: $\forall f, g \in \mathcal{G}^{\neq}$, $v(f g f^{-1} g^{-1}) < v(g)$ so $\operatorname{res}(f g f^{-1}) = \operatorname{res}(g)$ for all $f, g \in \mathcal{G}$. Thus for all $f \in \mathcal{G}$, we have $\operatorname{res}(t_i(f)) = \alpha_i \operatorname{res}(f)$. Since $\alpha_1 + \cdots + \alpha_n \neq 0$, we have $\operatorname{res}(t(f)) = \alpha(t) \operatorname{res}(f)$.

A unary term in the (one-sorted) language of A-groups "is" an element of the free product of A-groups $\mathcal{G} *^A A$. We have a unique A-group homomorphism $\alpha : \mathcal{G} *^A A \longrightarrow A$ with $\alpha \upharpoonright \mathcal{G} = 0$ and $\alpha \upharpoonright A = \mathrm{id}_A$. A term t is said $\operatorname{regular}$ if $\alpha(t) \neq 0$.

Lemma: residue of a regular term

For any regular $t \in \mathcal{G} *^A A$ with t(1) = 1 and all $f \in \mathcal{G}$, we have $res(t(f)) = \alpha(t) res(f)$.

Proof for $A = \mathbb{Z}$. Write $t = g_1 \ y^{\alpha_1} \cdots g_n \ y^{\alpha_n}$, so $\alpha(t) = \alpha_1 + \cdots + \alpha_n$. Since t(1) = 1, we can write $t = t_1 \cdots t_n$ where $t_i := (g_1 \cdots g_i) \ y^{\alpha_i} \ (g_1 \cdots g_i)^{-1}$. Near Abelianness: $\forall f, g \in \mathcal{G}^{\neq}$, $v(f g f^{-1} g^{-1}) < v(g)$ so $\operatorname{res}(f g f^{-1}) = \operatorname{res}(g)$ for all $f, g \in \mathcal{G}$. Thus for all $f \in \mathcal{G}$, we have $\operatorname{res}(t_i(f)) = \alpha_i \operatorname{res}(f)$. Since $\alpha_1 + \cdots + \alpha_n \neq 0$, we have $\operatorname{res}(t(f)) = \alpha(t) \operatorname{res}(f)$.

Consequence: we can solve t(y) = 1 for regular terms t via iterated approximations ($\eta \in \mathbf{On}$):

- $t_{\eta}(1) = 1$, then the only solution is y = 1.
- if $t_{\eta}(1) \neq 1$, then repeat by considering the term $t_{\eta+1} = t_{\eta}(f_{\eta} y)$ where $\alpha(t) \operatorname{res}(f_{\eta}) + \operatorname{res}(t(1)) = 0$ in $C_{v(t_{\eta}(1))}$.
- at limit stages λ , take a "pseudo-limit" of $(f_0 f_1 \cdots f_{\eta} \cdots)_{\eta < \lambda}$.

Theorem: unicity of solutions

For any regular $t \in \mathcal{G} *^A A$, there is at most one $g \in \mathcal{G}$ with t(g) = 1.

Theorem: unicity of solutions

For any regular $t \in \mathcal{G} *^A A$, there is at most one $g \in \mathcal{G}$ with t(g) = 1.

Theorem: strict monotonicity

If \mathcal{G} is ordered c-valued and $A = \mathbb{Z}$, then for any regular unary term t(y) over \mathcal{G} , the function $f \mapsto t(f) : \mathcal{G} \longrightarrow \mathcal{G}$ is strictly monotonous.

Theorem: unicity of solutions

For any regular $t \in \mathcal{G} *^A A$, there is at most one $g \in \mathcal{G}$ with t(g) = 1.

Theorem: strict monotonicity

If \mathcal{G} is ordered c-valued and $A = \mathbb{Z}$, then for any regular unary term t(y) over \mathcal{G} , the function $f \mapsto t(f) : \mathcal{G} \longrightarrow \mathcal{G}$ is strictly monotonous.

Theorem: existence of solutions

Suppose that \mathcal{G} is spherically complete and each A-module $\mathcal{C}_{\gamma}, \gamma \in v(\mathcal{G})$ is A-divisible. Then for any regular $t \in \mathcal{G} *^A A$, there is a $g \in \mathcal{G}$ with t(g) = 1.

Theorem: unicity of solutions

For any regular $t \in \mathcal{G} *^A A$, there is at most one $g \in \mathcal{G}$ with t(g) = 1.

Theorem: strict monotonicity

If \mathcal{G} is ordered c-valued and $A = \mathbb{Z}$, then for any regular unary term t(y) over \mathcal{G} , the function $f \mapsto t(f) : \mathcal{G} \longrightarrow \mathcal{G}$ is strictly monotonous.

Theorem: existence of solutions

Suppose that \mathcal{G} is spherically complete and each A-module $\mathcal{C}_{\gamma}, \gamma \in v(\mathcal{G})$ is A-divisible. Then for any regular $t \in \mathcal{G} *^A A$, there is a $g \in \mathcal{G}$ with t(g) = 1.

Corollary: extension of an old result of SMEL'KIN (1967)

If \mathcal{H} is residually A-nilpotent A-torsion free, then any regular $t \in \mathcal{H} *^A A$ has a solution in the residually A-nilpotent A-torsion free completion $\tilde{\mathcal{H}}$ ($\tilde{\mathcal{H}} = \mathcal{H}$ if it is A-nilpotent A-torsion-free).

Theorem: unicity of solutions

For any regular $t \in \mathcal{G} *^A A$, there is at most one $g \in \mathcal{G}$ with t(g) = 1.

Theorem: strict monotonicity

If \mathcal{G} is ordered c-valued and $A = \mathbb{Z}$, then for any regular unary term t(y) over \mathcal{G} , the function $f \mapsto t(f) : \mathcal{G} \longrightarrow \mathcal{G}$ is strictly monotonous.

Theorem: existence of solutions

Suppose that \mathcal{G} is spherically complete and each A-module $\mathcal{C}_{\gamma}, \gamma \in v(\mathcal{G})$ is A-divisible. Then for any regular $t \in \mathcal{G} *^A A$, there is a $g \in \mathcal{G}$ with t(g) = 1.

Corollary: extension of an old result of SMEL'KIN (1967)

If \mathcal{H} is residually A-nilpotent A-torsion free, then any regular $t \in \mathcal{H} *^A A$ has a solution in the residually A-nilpotent A-torsion free completion $\tilde{\mathcal{H}}$ ($\tilde{\mathcal{H}} = \mathcal{H}$ if it is A-nilpotent A-torsion-free).

What's next?

Spherical completion, divisible extensions of residues, singular equations (commutators, conjugacy,...), the case of non-nearly Abelian c-valued groups.

Thanks!

Let F be a field, $\chi(F)=0$. Let G be an Abelian ordered group. We have a Hahn series field F((G)), with its valuation $v:F((G))^{\times}\longrightarrow G$. A linear map $\phi:F((G))\longrightarrow F((G))$ is **contracting** if $v(\phi(s))>v(s)$ for all $s\neq 0$.

Let F be a field, $\chi(F)=0$. Let G be an Abelian ordered group. We have a Hahn series field F((G)), with its valuation $v:F((G))^{\times}\longrightarrow G$. A linear map $\phi:F((G))\longrightarrow F((G))$ is **contracting** if $v(\phi(s))>v(s)$ for all $s\neq 0$.

Let $\partial: F((G)) \longrightarrow F((G))$ be a *strongly linear* derivation with $\operatorname{Ker}(\partial) = F$. Then F((G)) is a Lie algebra for $[\![\cdot,\cdot]\!]: (f,g) \mapsto \partial(f) \ g - f \partial(g)$. Set

 $\mathbf{Cont}(\partial) := \{ f \in F((G)) : f \partial \text{ is contracting} \}.$

Groups of derivations

Let F be a field, $\chi(F)=0$. Let G be an Abelian ordered group. We have a Hahn series field F((G)), with its valuation $v:F((G))^{\times}\longrightarrow G$. A linear map $\phi:F((G))\longrightarrow F((G))$ is **contracting** if $v(\phi(s))>v(s)$ for all $s\neq 0$.

Let $\partial: F((G)) \longrightarrow F((G))$ be a *strongly linear* derivation with $\operatorname{Ker}(\partial) = F$. Then F((G)) is a Lie algebra for $[\![\cdot,\cdot]\!]: (f,g) \mapsto \partial(f) \ g - f \partial(g)$. Set

$$\mathbf{Cont}(\partial) := \{ f \in F((G)) : f \partial \text{ is contracting} \}.$$

Theorem

 $(Cont(\partial), *, 0, v)$ is an F-valued, c-valued group for the Baker-Campbell-Hausdorff product

$$f * g = f + g + \frac{1}{2} [f, g] + \frac{1}{12} ([f, [f, g]] - [g, [f, g]]) + \cdots$$

Let F be a field, $\chi(F)=0$. Let G be an Abelian ordered group. We have a Hahn series field F((G)), with its valuation $v:F((G))^{\times}\longrightarrow G$. A linear map $\phi:F((G))\longrightarrow F((G))$ is **contracting** if $v(\phi(s))>v(s)$ for all $s\neq 0$.

Let $\partial: F((G)) \longrightarrow F((G))$ be a *strongly linear* derivation with $\operatorname{Ker}(\partial) = F$. Then F((G)) is a Lie algebra for $[\![\cdot,\cdot]\!]: (f,g) \mapsto \partial(f) \ g - f \partial(g)$. Set

$$\mathbf{Cont}(\partial) := \{ f \in F((G)) : f \partial \text{ is contracting} \}.$$

Theorem

 $(Cont(\partial), *, 0, v)$ is an F-valued, c-valued group for the Baker-Campbell-Hausdorff product

$$f * g = f + g + \frac{1}{2} [f, g] + \frac{1}{12} ([f, [f, g]] - [g, [f, g]]) + \cdots$$

If F is an ordered field, then F(G) is ordered.

Let F be a field, $\chi(F)=0$. Let G be an Abelian ordered group. We have a Hahn series field F((G)), with its valuation $v:F((G))^{\times}\longrightarrow G$. A linear map $\phi:F((G))\longrightarrow F((G))$ is **contracting** if $v(\phi(s))>v(s)$ for all $s\neq 0$.

Let $\partial: F((G)) \longrightarrow F((G))$ be a *strongly linear* derivation with $\operatorname{Ker}(\partial) = F$. Then F((G)) is a Lie algebra for $[\![\cdot,\cdot]\!]: (f,g) \mapsto \partial(f) \ g - f \partial(g)$. Set

$$\mathbf{Cont}(\partial) := \{ f \in F((G)) : f \partial \text{ is contracting} \}.$$

Theorem

 $(Cont(\partial), *, 0, v)$ is an F-valued, c-valued group for the Baker-Campbell-Hausdorff product

$$f * g = f + g + \frac{1}{2} [f, g] + \frac{1}{12} ([f, [f, g]] - [g, [f, g]]) + \cdots$$

If F is an ordered field, then F(G) is ordered.

Proposition

 $\operatorname{Cont}(\partial)$ is a growth order group with valuation -v if and only if $(F((G)), v, \partial)$ is an H-field.